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In the Beginningthe world was void.And then a voice came and spoke:There shalt be Zero and One.There shalt be a di�erencebetween dark and light,earth and skywater and land.Humanity came.And they claimedto discover things likenight and daytruth and beautymind and matter.But, when you look close enough,all you have are Zeroes and Ones.



Contents
1 Introduction 62 Basics 82.1 A Core Theory of Bit-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.2 Solving Bit-Vector Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2.1 Canonizing Bit-Vector Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2.2 The Function called Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2.3 Solving Fixed-Sized Bit-Vector Equations . . . . . . . . . . . . . . . . . . . . . . . . . 102.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.1 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.2 Bit-Wise Boolean Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3.3 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3.4 Variable Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3.5 Variable Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.3.6 A Classi�cation of Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.4 Bit-Vectors of Unknown Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.4.1 The Standard Method: Everything is a Number . . . . . . . . . . . . . . . . . . . . . 192.4.2 One Domain: Dense Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.4.3 Bit-Vectors and Naturals: A Hybrid System . . . . . . . . . . . . . . . . . . . . . . . . 222.4.4 What is Best? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.4.5 A More General Solver: Frame Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.5 The Expressiveness of Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.5.1 Verbose Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.5.2 Solvers and Quanti�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.5.3 Solving BV
;bvecn is PSPACE-hard . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 On Decidability 273.1 Where the Problems are . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.1.1 Considering an Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 The Theory with Variable Length and Only Concatenation . . . . . . . . . . . . . . . . . . . 283.2.1 Term Representation via Context Sensitive Grammars . . . . . . . . . . . . . . . . . . 293.2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2.3 L(t1=t2) is not Context Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.2.4 An Interpretation of this Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.2.5 L(t1=t2) is Decidable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3 An Unsolvable Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3.1 Turing Machines (cf. [Sch92a]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.3.2 Encodings of Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.3.3 The Non-Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373



CONTENTS 43.4 Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 Solving Fixed-Sized Bit-Vector Equations 384.1 Solving Bit-Vector Equations via Monadic Logic . . . . . . . . . . . . . . . . . . . . . . . . . 384.1.1 In the Domain of WS1S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.1.2 Encoding Fixed-Sized Bit-Vector Equations in WS1S . . . . . . . . . . . . . . . . . . 394.1.3 From Bit-Vector Equations to Finite Automata . . . . . . . . . . . . . . . . . . . . . . 404.1.4 Constructing Solutions from Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 414.1.5 A Short Glimpse at the Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424.1.6 Run-Time Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1.7 Extension to Larger Theories? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.1.8 Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2 Solving via an Equational Transformation System . . . . . . . . . . . . . . . . . . . . . . . . . 474.2.1 Equational Transformation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.2.2 A Simple Strategy: Reduced Chopper . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.2.3 Run-Time Experiments with C< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.2.4 Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514.3 The Operationalization: Fixed Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3.1 The Algorithm in an Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3.2 Phase 1: Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3.3 Phase 2: Chunk-Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3.4 Phase 3: Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3.5 Phase 4: Coarsest Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3.6 Phase 5: Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.3.7 Phase 6: Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.3.8 Run Time Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.4 Introducing Heuristics for the Fixed Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.4.1 The Pigeon Hole Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604.4.2 Expressing Pigeon Hole in the Bit-Vector Theory . . . . . . . . . . . . . . . . . . . . . 604.4.3 The Idea: OBDD Melting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.4.4 Re�nement of the Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.5 Looking Back at Fixed Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Beyond Fixed Size 655.1 A Solver for Variable Width: Split-Chop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.1.1 Reasoning about Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.1.2 Splitting Context: The Solver Split-Chop . . . . . . . . . . . . . . . . . . . . . . . . . 665.1.3 The Context Split Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.2 Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 Conclusion 70A Former Results at the SRI 72A.1 An NP -complete Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72A.2 An NP -hard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74A.3 An Unsolvable Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75B Complexity Theory 77B.1 3CNF-TQBF is PSPACE-complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77B.2 BV
;[i:j]-Solvability is NP -complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS 5C Source Codes 80C.1 Solve via Mona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80C.2 Fixed Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Chapter 1Introduction The pure and simple truthis rarely pure and never simple.(Oscar Wilde)Solving equations is a task as old as math itself. The concepts of generating solutions for arithmetic terms,for example, are well understood and operationalized in the sense that they can be executed on computingdevices. This thesis is dedicated to the automation of solving an equational theory that is less popular buthighly interesting in the realm of computer science, namely the theory of bit-vectors.A Bit-Vector is a Bit-VectorAs the name suggests, bit-vectors are but a special case of common array-like data-structures. However,operations on bit-vectors like concatenation and extraction of contiguous parts are untypical for vectorsand rather remind one of strings. Furthermore, the property of a binary alphabet not only limits theexpressiveness but also o�ers a characteristic that can be utilized.Of course, bit-vectors can be encoded by means of arrays, strings or natural numbers. In this thesis itis claimed, however, that these approaches water down the interesting peculiarities of bit-vector terms thatare starting points for solving bit-vector equations.Solving Equations in Hardware Veri�cationFrom an abstract point of view, solving of equations just makes the information contained more explicit.If the equation is trivial or unsatis�able solving yields true or false respectively; otherwise, an equivalentsolved system of equations is computed.In the context of hardware veri�cation, e�cient mechanization of solving is required in order to processcomplex and tedious proofs. Here, formulae do seldom involve only statements about bit-vectors but arerather a conglomerate of various theories like natural numbers, lists and bit-vectors. This motivates the ideato embed solver algorithms for numerous theories in a capacious framework.Deciding Combinations of Quanti�er-Free TheoriesA prominent approach for deciding the combination of theories is presented by Shostak [Sho84]. Thekey to his algorithm is the computation of the congruence closure of a binary relation on a �nite labeledgraph [Gal87]. Here, a relation is called congruent, if it is both an equivalence relation and backward closed.This means informally that the congruence of two nodes follows from the congruence of all the (ordered)successor nodes. By means of this technique, simpli�ers for individual unquanti�ed �rst-order theories aremerged into a single procedure. 6



CHAPTER 1. INTRODUCTION 7In addition, Shostak's method requires that each distinct theory has the property of algebraic solvability. Atheory is algebraically solvable if there exists a computable function solve, that takes an equation s = t andreturns either true, false, or an equivalent conjunction of equations of the form xi = ti, where the xi's aredistinct variables of t that do not occur in any of the ti's.The Relevance of this ThesisAlthough bit-vectors are a fundamental data structure, apparently they have not attained proper attentionin the past. In particular, the characteristics of the theory of bit-vectors are widely neglected and ane�cient concept for solving bit-vector equations has not yet been etablished. In industrial sized applicationslike the formal veri�cation of the AAMP5 microprocessor by Miller and Srivas [MS95], a lack of e�cientautomatization proved to be a major bottelneck.This thesis investigates the problem of solving bit-vector equations both from a theoretical and practicalside. Complexity and decidability of bit-vector theories including concatenation, extraction, bit-wise booleanoperations and arithmetic are observed. Boolean operations on are introduced by means of ordered binarydecision diagrams, which also provide a conceptually clean way to encode arithmetic. Generalizations thatallow the width of bit-vector variables to be unknown are discussed as well. Surprisingly, extensions thatmaintain the �xed size lead to theories that are releated in the way, that for all of them the word problem isNP -complete. As expected, far reaching extention of the bit-vector theory leads neccessarily to the incom-pleteness of any solver algorithm. A proof is obtained by reduction of the halting problem. Furthermore, amore accurate characterization of the expressiveness of solving is developed. In general, solving algorithmscan be utilized to decide quanti�ed equations, which is made explicit in the Quanti�cation Lemma 2.9.On the practical side, several approaches for solving bit-vector theories are explored in this thesis. The taskof solving �xed-sized equations is performed by means of a translation to weak second order monadic logic,an equational transformation system and an operationalized and e�cient version of the latter, supportedby heuristics. These approaches are corroborated by implementations and run-time experiments. Finally,a general concept for solving bit-vector equations with variable width is given. The algorithms prsentedin this thesis have all been implemented and can be obtained at the Bit-Vector Research Page in Ulm:http://www.informatik.uni-ulm.de/ki/Bitvector/index.htmlOverviewThe thesis is organized as follows. Chapter 2 includes a formal de�nition for the theory of bit-vectors togetherwith a canonizer and solver. Extensions are introduced and an inspection of the complexity increase is given.In chapter 3 decidability of expressive bit-vector theories is discussed, culminating in the proof that a solverfor a rather general theory cannot exist. In chapter 4, three approaches for solving �xed-sized bit-vectorequations are treated and compared according to run-time performance. An intuitive extension to variablewidth is presented in chapter 5.AcknowledgementsThe author would like to express his gratitude to F.W. von Henke, J. Rushby and Harald Rue�. Withouttheir kind support and Harald's nagging questions, this work on reasoning about bit-vectors would not havetaken place.



Chapter 2Basics The point of philosophy is to start with something sosimple as not to seem worth stating, and to end withsomething so paradoxical that no one will believe it.(Bertrand Russell, The Philosophy of Logical Atomism)In this chapter an equational theory of �xed-sized bit-vectors including only concatenation and extractionoperations, the so-called core theory, is de�ned. Then, a canonizer and a simple solver for the core theoryis presented. Finally, extensions of the core theory to bitwise boolean operations, arithmetic and variableextraction and width are discussed.2.1 A Core Theory of Bit-VectorsThis section develops an equational theory for the �xed-sized bit-vectors of width n. Hereby the widthn is constrained to be a positive natural number, since bit-vectors of width 0 are excluded. The bits of abit-vector of width n are indexed from left to right, starting with index 0. In the following, n;m; p; : : : denotevalid widths of bit-vectors. The bit-vector theory contains constants c[n] of width n, concatenation t
u ofbit-vectors t and u, and extraction t[j : i], where i; j 2 IN , of i�j+1 many bits j through i from bit-vector t.These considerations lead to a many-sorted signature (see, for example, [Gal87]) with in�nitely many sortsymbols bvecn, n 2 IN+.De�nition 2.1 Let �
;[1:1] be the signature�
;[1:1] := h fbvecnjn 2 IN+g;fc[n]jn 2 IN+; 0 � c < 2ng[f: 
n;m :jn;m 2 IN+g[f: [j : i]njn 2 IN+ ^ i; j 2 IN ^ 0 � j � i < ng isuch that for appropriate n, i, and j: c[n] : ! bvecn: 
n;m : : bvecn � bvecm ! bvecn+m: [j : i]n : bvecn ! bveci�j+1 y8



CHAPTER 2. BASICS 9The dots to the left and to the right of function symbols indicate the use of in�x notation. Extraction isassumed to bind stronger than concatenation. In the following, x[n]; y[m]; z[p]; : : : denote variables of sortbvecn, bvecm, and bvecp respectively. The set of well-formed bit-vector terms is de�ned in the usual way andt[n]; u[m]; v[p]; : : : denote bit-vector terms of respective widths. Subscripts are omitted whenever possible andcan be inferred from the context. Moreover, t .=u denotes syntactic equality of terms t and u, and vars(t)denotes the set of variables in t.A bit-vector term t is called atomic if it is a variable or a constant, and simple terms are either atomicor of the form x[n][j : i] where x[n] is a variable and at least one of the inequalities i 6= n � 1, j 6= 0 holds.Moreover, terms of the form t1
t2
 : : :
tk (modulo associativity), where ti are all simple, are referred to asbeing in concatenation normal form. If, in addition, none of the neighboring simple terms denote constantsand a simple term of the form x[j : i] is not followed by a simple term of the form x[i+ 1 : k], then a termin concatenation normal form is called maximally connected.De�nition 2.2 The core theory of bit-vectors with concatenation and extraction is denoted by BV
;[1:1].Let �
;[1:1] be the signature from De�nition 2.1; then equational properties of BV
;[1:1] are given by the(conditional) �
;[1:1]-equalities1) (t[n]
u[m])[j : i] = t[n][j : i] If 0 � j � i < n2) (t[n]
u[m])[j : i] = u[m][j � n : i� n] If n � j � i < m+ n3) (t[n]
u[m])[j : i] = t[n][j : n� 1]
u[m][0 : i� n] If j < n � i < m+ n4) t[n][0 : n� 1] = t[n]5) t[n][k : j � 1]
t[n][j : i] = t[n][k : i]6) (t[n]
u[m])
v[p] = t[n]
(u[m]
v[p])7) t[n][j : i][l : k] = t[n][l + j : k + j] yNote that well-formedness of bit-vector terms implies that 0 � k < j � i < n in equation 5) and 0 � l � k � n^ 0 � l � k � i� j in equation 7) above. Semantic entailment j= in the equational theory above is de�nedin the usual way.Fixed-sized bit-vectors of width n can be interpreted as �nite functions with domain [0::n) andcodomain f0; 1g: c[n] := �x : [0::n): (c DIV 2x)MOD 2s[n]
t[m] := �x : [0::n+m): If x < n Then s[n](x) Else t[m](x� n)s[n][j : i] := �x : [0::i� j + 1): s[n](x+ j)with appropriate i and j. Sometimes we also use the notation x[n](i) in order to refer to the ith bit \0"or \1". Finally, concatenations of \1"s are abbreviated by -1[n], which reminds of the correct notation(2n-1)[n].a2.2 Solving Bit-Vector EquationsThroughout this thesis, solving is understood in terms of matching the requirements of Shostak's framework ofcombining decision procedures, as applied in proof assistance systems like EHDM [Com93] and PVS [ORS92].Here, two distinct functions for each equational theory have to be implemented, which are called canonizerand solver. This demand is satis�ed in this section by presenting a canonizer for the core theory and also asimple though not e�cient solver. Their properties are made explicit in the following.aIn related work, sometimes the notation 1[n] is found. However, this could lead to confusions.



CHAPTER 2. BASICS 102.2.1 Canonizing Bit-Vector TermsInformally, a canonizer transforms terms of some ground equational theory T into an equivalent and well-de�ned canonical form. In case of BV
;[1:1], this is the maximally connected form.Lemma 2.1:The algorithm in Figure 2.1 yields a maximally connected form.Proof: Sub-procedure � dissolves encapsulated structures. This results in a concatenation of simpleterms and extractions like x[n][0 : n-1] are simpli�ed to x[n]. The sub-procedure � combines all simple termsstanding abreast, if they are attachable. For example, t[n][k : j � 1]
t[n][j : i] is attached to t[n][k : i]. Thus,the result of � � � is maximally connected. �Theorem 2.2: [Properties of the Solver]Let T
;[1:1] denotes the set of well-formed terms in the core theory of bit-vectors. The procedure� displayed in Figure 2.1 ful�lls the following properties:1. An equation t= u in the theory is valid i� �(t) .=�(u)2. If t 62 T
;[1:1] then �(t) .=t3. �(�(t)) .=�(t)4. If �(t) .= f(t1; : : : ; tn) for a term t 2 T , then �(ti) .= ti for 1 � i � n5. vars(�(t)) � vars(t)Proof: By inspection and Lemma 2.1. �Therefore, � ful�lls the requirements on canonizers as stated in [CLS96] to allow integration in Shostak'sframework. It has been shown in [CMR96], that the worst-time complexity of � is O(jsj � logn+ n logn).Note: In the American speech area, the separation of the technical terms canonization and normalizationis sometimes a bit sloppy. In this thesis a canonical form is understood as the unique representation of aterm (see 1.), whereas normalization only transforms to a well-de�ned form without necessarily providingthis property. For example, x[8][1 : 3]
x[8][4 : 5] is in concatenation normal form. But the correspondingcanonical term is also maximally connected, namely x[8][1 : 5].2.2.2 The Function called SolverA solver for an algebraic theory T transforms equations in this theory into a more explicit form. In extremecases, it returns true or false namely if the equation is valid or unsatis�able. Otherwise, the solver returnsa representation of all satisfying models, which is not neccessarily unique.2.2.3 Solving Fixed-Sized Bit-Vector EquationsThe simplest approach for solving bit-vector equations involves bit-wise splitting. A bit-vector equationt[n] = u[n], where t[n] and u[n] are maximally connected, can be understood as a collection of equations onbits:
t:
u:

... n-10 1 2



CHAPTER 2. BASICS 11�(s) :=Cases s Of t
u ! �(t)
�(u)t[n][0 : n-1] ! �(t[n])t[j : i][l : k] ! �(t[l + j : k + j])(t[n]
u[m])[j : i] ! If i < n Then �(t[n][j : i])Elseif n � j Then �(u[m][j-n : i-n])Else �(t[n][j : n-1])
�(u[m][0 : i-n])EndifEndcases�(s) :=Cases s Of c[n]
c0[m]
u ! ��(c+ 2n � c0)[n+m]
u�c[n]
u ! c[n]
�(u)x[n][j : i]
x[n][i+ 1 : k]
u ! �(�(x[n][j : k])
u)x[n]h[j : i]i
u ! x[n]h[j : i]i
�(u)Otherwise sEndcases�(s) := �(�(s))Figure 2.1: A Canonizer for Computing the Maximally Connected FormThe bit-vectors t[n] and u[n] are dissolved to their bits t[n][0 : 0], t[n][1 : 1] ... u[n][n-1 : n-1]. These bits areeither constants or extractions of width one on bit-vector variables.Each splinter of a bit-vector variable is treated like a simple boolean variable. Thus n equations inthe boolean realm are obtained that can be propagated one by one. A pseudo code representation of thisalgorithm is given in Figure 2.2. In this form, it runs in worst-time complexity O(n4), due to the Foreach -selection in line 8.Theorem 2.3:Let E := s(e), ti denote terms in the core theory BV
;[1:1] and xi represent original variables.The solver s in Figure 2.2 ful�ls the following properties:1. ` e , s(e) is in the theory2. E 2 ftrue; falseg or E = Vi xi = ti3. If e contains no variables, then E 2 ftrue; falseg4. If E = Vi xi = ti, then the following holds:(a) xi 2 vars(e)(b) for all i; j : xi 62 vars(tj)(c) for all i; j : xi 6= xj(d) for all i : �(ti) = �(ti)Proof: By inspection. �



CHAPTER 2. BASICS 12naive-solve(t[n] !=u[n]) =V := vars(t[n]) [ vars(u[n])Foreach i 2 f0; : : : ; n� 1g Do Ei := f�(t[n][i : i]); �(u[n][i : i])g OdE := �E1; : : : ; En�1	While 9i; j : i 6= j : Ei \ Ej 6= ; DoEi :=Ei [EjE :=E nEj OdForeach Ei 2 E Do ri := If c[1] 2 Ei Then c[1]Else v[m][i : i] 2CHOOSE EiEndif Odr(v[m][i : i] : v[m] 2 V ) := If 9Ej : v[m][i : i] 2 Ej Then rjElse v[m][i : i]EndifCase 9Ei : 0[1] 2 Ei ^ 1[1] 2 Ei ) Return false8Ei 2 E : jEij= 1 ) Return trueElse ) Return � v[m] = m-1Ni=0 r(v[m][i : i])���v[m] 2 V �Endcase Figure 2.2: A Simple Solver for the Core TheoryThese properties match the requirements of Shostak's framework (cf. [CLS96]). A result in this format isreferred to as being in solved form. The core theory has the beautiful feature of being convex, i.e. any mostgeneral solution can be expressed by a conjunction of equations. This property is lost while extension tovariable width and therefore the notion of solving has to be extended as well. This is treated in section 2.4.5.2.3 ExtensionsIn this section the core theory is extended to include operations like bit-wise boolean operations and arith-metic and also permit variable extraction and unknown width, though the latter is treated more explicitlyin section 2.4. For each extension an appropriate generalization of the canonical form is discussed. First,some syntactic sugar is introduced.2.3.1 Syntactic SugarThe following extensions of the core theory do not enlarge the syntactic power of the core theory, for theycan be completely expressed by means of concatenation and extraction.



CHAPTER 2. BASICS 13De�nition 2.3: [Syntactic Sugar]�ll[n](b : Bit) := �b � (2n-1)�[n]repeat(t[n];m) := If m = 1 Then t[n]Else t[n] 
 repeat(t[n];m-1)Endifext(t[n]; l) := If njl Then t[n]l = nElse t[n]l DIV n
t[n][0 : (l MOD n)� 1]Endifshift(t[n];m) := 0[m]
t[n]rotateleft(t[n];m) := t[n][0 : n-m-1]
 t[n][n-m : n-1]rotateright(t[n];m) := t[n][m : n-1]
 t[n][0 : m-1] yThe �ll operator iterates some bit n times. If the bit is �xed, these expressions are canonized to 0[n] and-1[n] respectively. The more 
exible operation repeat denotes the concatenation of the same bit-vector�nitely often. Like in regular expressions, this is marked by an exponent, like t[n]3 = t[n]
t[n]
t[n]. A moregeneral form of this repeat is the extension of a bit-vector term to a �xed length by iteration up to thedesired point as de�ned in [BP98]. The shift operation adds some padding with zeroes, usually up front. Ashift(t[n];m) is equivalent to 0[m]
t[n]. Similar are rotations to the left or the right that push over
owingbits back to the beginning. A rotateleft(x[8],2), for example, results in x[n][0 : 5]
x[n][6 : 7].For these notations have an equivalent, more basic representation in the core theory, they are treated asmacros. During canonization, they are unfolded to their right hand side in De�nition 2.3.2.3.2 Bit-Wise Boolean OperationsA boolean connective \�" applied on bit-vector terms is understood as the bit-wise application of thisoperation.De�nition 2.4s[n] � t[n] := �s[n][0 : 0] � t[n][0 : 0]�
� � � 
�s[n][n-1 : n-1] � t[n][n-1 : n-1]� yWell-formedness requires that the arguments of boolean operations are bit-vector terms of equal width.Canonization via OBDDsIn order to obtain a canonical form of boolean bit-vector terms, the notion of ordered binary decision diagrams(OBDDs) [Bry92] is introduced. These structures are also known as one-time only branching programs, wherethe set of node variables are visited in a �xed (though arbitrary) order (cf. [vL90a, p.796�]).De�nition 2.5 A bit-vector OBDD of width n is a rooted, directed and acyclic graph where the nodesare marked with bit-vector variables or extractions on bit-vector variables of width n. The only leaf nodesare 0[n] (false) and -1[n] (true). Each non-leaf node has exactly two successors. By convention, the edgesdisplayed on the right side in diagrams are called the the-edges and are followed, if the node evaluates totrue. The left edges or else-edges are followed, if the evaluation yields a false. From root to leaves, themarks of the nodes occur according to an arbitrary but �xed order. The structure of a bit-vector OBDD isrequired to be maximally shared. y



CHAPTER 2. BASICS 14Obviously, bit-vector OBDDs can be utilized to represent all kinds of bit-wise boolean operations. Thebit-vector term x[3] ^ y[3], for example, is represented asExample 2.1
0 1

x

y

[3]

[3]

[3][3]
-

Ite (x[3] ; Ite (y[3] ; -1[3] ; 0[3]) ; 0[3])The Ite conditional (if-then-else) is equivalent to the graph representation on the left. The intendedmeaning of such a bit-vector OBDD is the concatenation of n analogous binary functions, applied on the nindividual bits of the bit-vector variables. Thus, the OBDD in Example 2.1 is equivalent toExample 2.2
0 1

x

y

[3]

[3]

[1] [1]

[0:0]

[0:0]

- 0 1

x

y

[3]

[3]

[1] [1]

[2:2]

[2:2]

-0 1

x

y

[3]

[3]

[1] [1]

[1:1]

[1:1]

-

Ite (x[3][0 : 0] ; Ite (y[3][0 : 0] ; 1[1] ; 0[1]) ; 0[1]) 
Ite (x[3][1 : 1] ; Ite (y[3][1 : 1] ; 1[1] ; 0[1]) ; 0[1]) 
Ite (x[3][2 : 2] ; Ite (y[3][2 : 2] ; 1[1] ; 0[1]) ; 0[1])A Canonical FormSince both extraction and concatenation distribute over bit-vector OBDDs, the canonical form for the coretheory can be extended in a straight-forward way to also include boolean operations.De�nition 2.6 [Extended Canonical Form]A bit-vector OBDD is called trivial if it is of the form Ite (t[n] , -1[n] ,0[n]). Non-trivial bit-vector OBDDsare simple terms. A bit-vector term u[n] is canonical, if� none of the OBDDs in u[n] is trivial� u[n] is either a simple term or a concatenation of simple terms, such that no connected simple termscan be attached.If no OBDDs occur, this is conform with the de�nition of the maximally connected form yThe notion of simple terms is exteded to include also bit-vector OBDDs whose nodes are either bit-vectorvariables or extractions on bit-vector variables. This allows an e�ective representation of boolean bit-vectorterms of large width while minimizing the number of introduced nodes. Trivial OBDDs Ite (t[n] , -1[n] ,0[n])are canonized to t[n]. The canonical form of x[3] ^ y[3] is given in example 2.1.2.3.3 ArithmeticIn most hardware contexts, arithmetic modulo a rest class ring Zn is a must. For simplicity, we restrict ourattention to addition. Following the proposed concepts, other operations can be de�ned straight-forward. In



CHAPTER 2. BASICS 15order to express the connection between bit-vectors and natural numbers, the function pair bv2nat�:� andnat2bv[:]�:� is introduced.De�nition 2.7 [Arithmetic Interpretation]bv2nat�t[n]� := n�1Pi=0 t[n](i) � 2inat2bv[n]�c� := (c MOD 2n)[n]where t[n]:bvecn and c:IN . yThis allows to express addition +[n] as a collection of in�nitely many function symbols.De�nition 2.8 [Addition]x[n] +[n] y[n] := nat2bv[n]�(bv2nat�x[n]�+ bv2nat�y[n]� MOD 2n)� yBoolean operations bind stronger than addition. If they are provided, subtraction can be introduced bymeans of a derived macro operation. In particular it is su�cient to de�ne a \negative" number via the(n-1)-complement:De�nition 2.9 [Unary Minus] �x[n] := :x[n] +[n] 1[n] yThis is consistent with our declaration of -1[n] in section 2.1, since the (n-1)-complement of -1 is aconcatenation of n \1"s.The Canonization ProblemWhenever the theory includes concatenation, extractions or boolean operations as well, the additionoperation leads to canonization problems. For example, the following terms on the left hand side areequivalent to their right hand side counterpart, but there does not seem to be an intuitive criterion onwhich representation is to be called canonical:Example 2.3 x[8]+[8]x[8] = 0[1]
x[8][0 : 6]�x[8]+[8]12[8]�[1 : 7] = x[8][1 : 7]+[7]6[7]x[2]+[2]y[2] = �x[2] XOR y[2] XOR 0[1]�
 �x[2][0 : 0]^ y[2][0 : 0]�Canonization is one of the requirements for embedding various theories into Shostak's framework of congru-ence closure. So either the task of canonizing has to be solved or the framework has to be enlarged to amore general one. To the best of my knowledge, neither of this has been solved yet in a way resulting inreasonable run-time (cf. also [BP98]).In the approach described below a canonical form is de�ned, thus solving the canonization problem.However, the cost|in terms of computation time|is rather high.Arithmetic via OBDDsDue to the �nite domain, any arithmetic operation can be expressed by means of Boolean functions andconsequently via OBDDs. The idea here is to split up the arguments into a concatenation of bits andcompute a concatenation of OBDDs incrementally. If the operation is an addition, a ripple-carry adderdescribes the applied boolean functionality precisely.



CHAPTER 2. BASICS 16Unfortunately, in many practical cases the OBDDs grow quite large as a consequence, for the number of\input bits" at a position grows with the width of the operation. For example, the term x[2]+[2]y[2] canonizestoExample 2.4
x

[2]
[0:0]

y[2] [0:0] y[2] [0:0]

0[1] -1 [1]

x
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[1:1]

x
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[0:0] x
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0[1] -1 [1]

y[2] [1:1]

y[2] [0:0] y[2] [0:0] y[2] [1:1]

y[2] [1:1]y[2] [1:1]

The term order applied here is x[2][1 : 1] � x[2][0 : 0] � y[2][1 : 1] � y[2][0 : 0]. As observed frequently, thesize of the OBDDs is heavily dependent on the choice of this order. In fact, this order is a rather bad one.The canonization of terms x[n]+[n]y[n] uses the following resources:n 1 2 3 4 5 6 7 8 9 10#Nodes at [n-1] 5 11 25 55 117 243 497 1007 2029 4075#Nodes built 7 24 61 138 295 612 1249 2526 5083 10200time used [s]b 0.009 0.04 0.16 0.715 3.206 14.668 63.505 285.50 1181.98 4856.48The task of �nding an optimal ordering is itself NP -complete (cf. [BW96]). The best order I found (foraddition) is pushing down the least signi�cant position. For x[2]+[2]y[2] and the order x[2][1 : 1] � y[2][1 : 1] �x[2][0 : 0] � y[2][0 : 0]. For x[2]+[2]y[2] this results inExample 2.5
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0[1] -1 [1]

x
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0[1] -1 [1]
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y[2] [1:1] y[2] [1:1]

y[2] [0:0]

x
[2]

[0:0] x
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[0:0]

y[2] [0:0]

The OBDD to the right has only nine nodes (instead of eleven in Example 2.4). The advantage becomesmore signi�cant with growing width as can be deduced from the following table.n 1 2 3 4 5 6 7 8 9 10#Nodes at [n-1] 5 9 21 33 45 57 69 81 93 105# Nodes built 7 23 43 63 83 103 123 143 163 183time used [s] 0.009 0.034 0.148 0.324 0.549 0.843 1.434 1.886 2.256 2.907bMeasured with compiled Allegro Common Lisp 4.3, Linux on a Pentium 150MHz, 48MB of Ram.



CHAPTER 2. BASICS 17If the operations are good natured, the construction results in small OBDDs. For example, building upa OBDD for x[n]+[n]x[n] yields only trivial nodes. Moreover, the canonical form is well de�ned for allexpressions via the already introduced concepts. In the example 2.3 the OBDD representations of the righthand sides build the canonical form.Note: There are classes of boolean functions, where even for the optimal ordering OBDD shows a ratherbad performance. A pathological example is the hidden weight bit function (HWB):De�nition 2.10 HWB(x1; : : : ; xn) := xsum; where sum := x1 + � � �+ xn and x0 := 0 yIn [Bry91] and exponential lower bound in the number n of variables was proven. Refer to [BLW95] for amore explanatory proof, yielding the slightly better lower bound 20:2n�1 for the number of OBDD nodes.2.3.4 Variable ExtractionSo far the naturals i and j in an extraction [j : i] have been considered to be constants. It might be desirablenot to �x the positions where extractions apply. Then, terms like x[4][i : i+ 1] are allowed, where i : IN isan integer variable. In general, type correctness leads to implicit constraints here. For example, the termx[4][i : i+ 1] implies 0 � i � 2.Since the width of bit-vectors is still �xed, the domain these integer variables can be chosen from is �nite.Apparently, the introduction of variable extraction can be interpreted as a �nite case-split on the width ofthe contained terms. This results in a set of terms with �xed extractions that can be canonized and solvedvia the methods described previously. However, the task of deciding whether a bit-vector equation withvariable extraction is satis�able is NP -complete; for a proof refer to Appendix B.2.2.3.5 Variable WidthIn contrast to the extensions above, allowing variable width on bit-vector variables is a critical step. Formally,this can be achieved via introducing dependent types bvecn where n is an integer variable, x[n] : bvecn.This degree of freedom stipulates the solution approaches more than slightly and is discussed in detail insection 2.4.2.3.6 A Classi�cation of ExtensionsThe extensions discussed above are not isomorphic in the sense that terms from one extension can not betranslated into an equivalent term in another one not being a superset in general. Thus, boolean operations,arithmetic, variable extraction and variable width generate a palette of di�erent theories. The overall pictureis sketched in Figure 2.3. The criteria used (here) to measure the \di�culty" of a theory is the complexityclass of the language containing but solvable equations. More precisely, given a theory T of bit-vectors, thislanguage is de�ned asLTt=u := ft= uj t; u 2 T; there exists an assignment � on vars(t) [ vars(u) with � j= t= ugThe complexity class of the language LTt=u is stated in square brackets. Figure 2.3 is also anticipating somelater results and refers to an extended counting theory that is de�ned in Appendix A.3 under the abbreviation9BV[n]. The NP -hardness of the bit-vector theory only with composition and variable width is shown inAppendix A.2 (it is still open whether it is in NP ) and the undecidability of the core theory with variableextraction, arithmetic, boolean operations and variable width is treated in section 3.3. The remaining proofof the NP -completeness of the topmost theory within the grey area is given here.
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Figure 2.3: Overview on Extensions and ComplexityTheorem 2.4:Let BV
;[i:j];+;^be the theory of �xed-sized bit-vectors with variable extraction, arithmetic andboolean operations. Then the languageL
;[i:j];+;^t=u := ft= ujt; u 2 BV
;[i:j];+;^ there exists an � on vars(t) [ vars(u) with � j= t= ugis NP -complete.Proof: Since the theory is �xed-sized, any possible assignment to variables in t and u can be guessed inpolynomial time (the length information is assumed to be given unary). Checking equality of fully interpretedterms is polynomial, thus L
;[i:j];+;^t=u 2 NP .The NP -hardness follows from the NP -hardness of the sub-theory BV
;[i:j] as shown in appendix B.2. �



CHAPTER 2. BASICS 19It is surprising, that the complexity of the resulting theories builds an area of NP -complete problems(underlayed grey in the picture) rather than a cascade.2.4 Bit-Vectors of Unknown WidthIf we do not restrict the width of bit-vector variables, the notion of a solver has to be extended. Threemethods are presented and the drawbacks and advantages of each are discussed brie
y. Finally, a formalismcalled frame solving according that follows the idea of the third method is de�ned.2.4.1 The Standard Method: Everything is a NumberThe simplest approach of dealing with bit-vector equation of variable width is to express everything vianatural numbers. More precisely, the bit-vector terms are translated into natural number terms includingthe operations + , � 2 , DIV 2 and MOD 2 . Additionally, some side constraints in form of equationsand inequalities arise. The transformation can be sketched as follows:x[n] ! x; x < 2nx[n]
y[m] ! x[n] � 2m + y[m]x[n][j : i] ! (x[n]MOD 2j+1)DIV 2i; 0 � j � i < nwhere the inequalities on the right are additional constraints. In this way a rich set of state-ments concerning natural numbers can be encoded. Let in the following x; y be variables we wantto apply constraints on, let further a; b; c; d be auxiliary variables we are not interested in andl;m; n be position variables. Then statements of the following form can be generated alongside:(i) x � 2n = y via 0[1]
a 
 a
xa
0[1] 
 b !=(ii) x � 2n = y � 2m via 0[1]
a 
 0[1]
b 
 a
xa
0[1] 
 b
0[1] 
 b
 y !=(iii) x[n] = 2m � 1 via 0[1]
a 
 1[1]
b[m] 
 xa
0[1] 
 b[m]
1[1] 
 b[m]
a !=(iv) x[n] = 2m � 2l via 0[1]
a 
 1[1]
b[m�l] 
 0[1]
c[l] 
 xa
0[1] 
 b[m�l]
1[1] 
 c[l]
0[1] 
 c
 b
a !=(v) x�pre y via 0[1]
a 
 x
 aa
0[1] 
 y
0[1] !=(vi) x�sub y via 0[1]
a 
 0[1]
b 
 b
x
aa
0[1] 
 b
0[1] 
 0[1]
 y
0[1] !=The symbols �pre and �sub denote an unstrict pre�x and substring relation respectively. Note that theleftmost position is viewed as the �rst one.The advantage of this approach is that the original problem is transferred into a well-known �eld, thenatural numbers (with modulo arithmetic). On the other hand, there are also mayor drawbacks. Decidingnatural numbers with non-linear constraints and modulo arithmetic is a di�cult and expensive task, at leastin general. Moreover, the characteristic properties of bit-vector equations become hard to exploit. Thefollowing paragraph explains that the fundamental di�erence between positions and values is rather watereddown than lost.



CHAPTER 2. BASICS 20There are Two Classes of VariablesThe transformation to equations and inequalities over IN does not entirely yield a untyped logic. E.G. it isclear from construction, that there are only special kinds of terms that are put up into the exponent. In fact,two categories of integer terms that can be distinguished: terms denoting the \content" or value of bit-vectors,further referred to as hValue Termi and terms denoting position or width, denoted by hPosition Termi.Consequently, a signature can be given as follows:�IN := h f hValue Termi; hPosition Termi g;f cV : ! hValue Termi;+V : hValue Termi � hValue Termi ! hValue Termi;cP : ! hPosition Termi;+P : hPosition Termi � hPosition Termi ! hPosition Termi;� 2 : hValue Termi � hPosition Termi ! hValue Termi;MOD 2 : hValue Termi � hPosition Termi ! hValue Termi;DIV 2 : hValue Termi � hPosition Termi ! hValue Termi g iThe fact that this distinction can be maintained, suggests that the theory of natural numbers is too powerfulto express properties of bit-vectors tightly. For example, though an operation � 2 exists, there can notbe constraints like x � 2x = 8.2.4.2 One Domain: Dense EncodingThere is no conceptual reason, why length and content of a bit-vector should be distinguished. The followingapproach de�nes a one-to-one correspondence of bit-vectors of variable width to natural numbers. However,it is necessary to apply a non-standard encoding in order to achieve this.Counting StringsLet � = f0; 1g be an alphabet. Then it is well-known that �� can be enumerated lexicographically:�� = f"; 0; 1; 00; 01; 10; 11; 000; : : :gThis enumeration yields an isomorphism � from �� to natural numbers:IN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18�� " 0 1 00 01 10 11 000 001 010 011 100 101 110 111 000 001 010 011Think of n 2 IN as generated by an in�nite rown = 1Xi=0 ci � 2i (2.1)where the coe�cients ci 2 f0; 1; 2g. The set fcig1i=0 is not a unique representation of n, however a extraneouscondition guarantees uniqueness:9N : (8i < N : ci 6= 0) ^ (8i � N : ci = 0) (2.2)This N is exactly the width of the intended bit-vector and the coe�cients 1 and 2 stand for the bits \0"and \1" respectively. As a result of this observation, both � and ��1 can be computed e�ciently, a simplealgorithm is given as follows.



CHAPTER 2. BASICS 21� (x0 � � �xm) = If (m < 0) Then 0Else 2 � �(x1 � � �xm) + x0 + 1Endif��1 (xD) = If (xD = 0) Then "Else If even(xD) Then 1[1] 
 (��1(xD�22 ))Else 0[1] 
 (��1(xD�12 ))EndifEndifFor f0; 1g� is an intuitive description for the set of bit-vectors with �nite but unrestricted size, the relatednatural number is a valid encoding of a bit-vector. This is called a dense encoding. In the following xDdenotes a dense encoding of a bit-vector x[m].c Obviously, there is a tight connection between the width ofa bit-vector and its dense encoding.De�nition 2.11 width(xD) := blog2 (xD + 1)cddxDee := 2blog2 (xD+1)c yDense Encoding and Bit-Vector TermsA remarkable property of this encoding is that many bit-vector terms can be processed in a straight forwardway. A concatenation, for example, results in a sum of its components, the rightmost term multiplied withan o�set that is a potential of 2 (cf. equation 2.1). The coherence can be expressed as follows.Lemma 2.5: 1: �(x[n]
y[m]) = �(x[n]) + dd�(x[n])ee � �(y[m])2: �(x[n][j : i] ) = ��(x[n])MOD (2i+2 � 1)�DIV 2j3: ddxDee = 2width(xD)4: ddxD
yDee = ddxDee � ddyDeeProof: By inspection. �The fact that dense encoding is possible demonstrates, that there are no inherent two types of integer termsand that the information of length and content can be combined to one data. On the other hand, denseencoding does not appear to be quali�ed as an encoding of bit-vectors for the following reasons. First, itdoes not avoid all type check constraints: extraction with natural numbers still leads to constraints likei � width(xD). Second, the processing of boolean operations becomes extremely di�cult, for the resultingfunctions are quite unintuitive. Moreover, if there is composition or variable extraction contained in the bit-vector equation, the terms on natural numbers are not linear. Thus the existence of an e�cient algorithmto process them is doubtful.cThis is just to avoid confusion; of course, xD is a natural number and all operations de�ned in IN are de�ned on xD asusual.



CHAPTER 2. BASICS 222.4.3 Bit-Vectors and Naturals: A Hybrid SystemThe idea here is to represent unknown information (the width of a bit-vector variable) by a natural numbervariable. This way, a hybrid theory is gained containing as well an in�nite number of bit-vector types bvec1,bvec2, : : :, the type IN and dependent types bvecn, where n : IN is a variable.This yields a powerful type system expressive enough to represent both concatenation and extraction oper-ations over unknown size (the positions to be extracted might as well be variables), boolean operations andeven arithmetic. Thus, an in�nite set of operations like +[n] is introduced, which allows an intuitive andwell-de�ned notion of terms like x[n] +[n] y[n].Obviously, this concept leads to some type correctness constraints. If e.g. a term like x[n][2 : i] is encoun-tered, the following constraints result from the well-formedness:(i) i � n� 1; (ii) 2 � i; (iii) 3 � n:Now, suppose that the equation containing x[n][2 : i] is satis�able but not valid. Then these constraintsshould occur explicitly in the solved form, for the equation is only satis�able with respect to them. Thisrequires some processing of these equations. If an additional constraint n � 2 is given, the unsatis�abilityof the whole equation follows.This observation motivates the desire for a simpler way to represent variable length.2.4.4 What is Best?None of the approaches discussed in this section is perfect; at least one of desirable properties as intuitiveencoding, easy extensibility or comfortable solving (e.g. by means of reduction to a previously solved theory)is not given. However, since typical applications include boolean operations and parts of bit-vector termswith �xed width, the small and beautiful approach of dense encoding is dropped here.The crucial di�erence between the approaches in 2.4.1 and 2.4.3 is, that in the latter one a fundamentaldistinction between bit-vectors and natural numbers is taken into account. This requires a rather complicateprocessing but allows to exploit special properties of bit-vectors (like the known o�set of bit-vectors with�xed width) more e�ciently. Also, a composition does not necessarily lead to non-linear constraints butcan be handled by means of case-splits, which will prove to be a more fruitful concept (see chapter 5).Thus, the hybrid system is considered to be the most attractive one.2.4.5 A More General Solver: Frame SolverConsider a hybrid theory of bit-vectors of possibly unrestricted size and variable extraction. In order tode�ne solving for this special theory we extend the notion of a solver and solving is de�ned in a more generalway. This extension is motivated as follows.Example 2.6 x[n] 
 0[1] 
 y[m]z[2] 
 1[1] 
 w[2] !=This equation is solvable, if either n = 1;m = 3 or n = 3;m = 1 holds, but not if n = 2;m = 2. This cannotbe expressed in a conjunction of equations. Thus, strictly speaking, no solver according to Theorem 2.2 canexists.What Frames Stand forIn order to allow a kind of solving in a more general context, we have to introduce something like a disjunctionof solutions. Observe that these disjunctions can only be caused by equations over integer variables. Thus,



CHAPTER 2. BASICS 23the intuitive way to describe this disjunction is to build case-splits over special integer constraints. Theseare called frames and the corresponding solving algorithm sF is called frame solver.De�nition 2.12 A frame is a tuple (�;	) where� � is a set of bit-vector equations of the form xi[ni] = : : :,� 	 is a set of constraints on natural numbers.also required is that� none of the left hand side variables in � is contained in a right hand side,� 	 contains only variables over Z which occur in � as width declarations or positions in extractions,� 	 is closed according to De�nition 5.1 on page 66) - in particular is 	 satis�able. yDe�nition 2.13 A frame solver sF is a function mapping a set of bit-vector equations fE1; : : : ; Emg toa set of frames f(�1;	1); : : : ; (�k;	k)g where� All variables on the left hand sides of �{ are contained in at least one E�, { = 1; : : : ; k; � = 1; : : : ;m� The 	{ are pairwise disjoint, i.e. for any two 	{;	{0 ; { 6= {0, there exists no mapping from thenatural variables to IN that is a model of 	{ and 	{0� For all interpretations I: I j= E1 ^ � � � ^ Em i� I j= (�1 ^	1) _ : : : _ (�k ^ �k) yFor the equation in Example 2.6, a frame solver could yield informally:Example 2.7
sF � x[n]
0[1]
y[m]z[2]
1[1]
w[2] !=� = 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

0BB@8>><>>: x[n] = a[1]y[m] = 1[1]
b[2]z[2] = a[1]
0[1]w[2] = b[2] 9>>=>>; ;� n = 1m = 3 �1CCA ;0BB@8>><>>: x[n] = a[2]
1[1]y[m] = b[1]z[2] = a[2]w[2] = 0[1]
b[1] 9>>=>>; ;� n = 3m = 1 �1CCA
9>>>>>>>>>>>>>=>>>>>>>>>>>>>;2.5 The Expressiveness of SolvingSolving is far more a task than just �nding a solution. The fact, that a representation of all possible solutionshas to be computed can be exploited in a way to construct a decision procedure for even quanti�ed formula.This statement is made explicit in the following.



CHAPTER 2. BASICS 242.5.1 Verbose SolversFirst, the notion of a verbose solving is to be introduced for explanatory reasons. Let # be an (arbitrary)ordering of variables in a theory.De�nition 2.14 A frame solver s (cf. De�nition 2.13) is called verbose [with respect to # ], if it ful�llsthe conditions 1.-5. in Theorem 2.2 and the additional property:For each result E of s, if E = Vi xi = ti then6. for all xi 2 V ar: xi = ti 2 E[ 7: the set E is ordered according to the left hand sides with respect to # ] yIn the following, a verbose solver is denoted with a hat, like ŝ.Property 6. might result in an surplus use of fresh variables. E.G. the result x[n] = y[n] represented asx[n] = a[n] ^ y[n] = a[n], with a fresh variable a[n].Lemma 2.6:For each [frame] solver s [with respect to #] there exists a verbose solver ŝ [with respect to #].Moreover, if s=O(f) then ŝ = O(f + jV arsj � log jV arsj).Proof: Let E := s(t= u). If E 2 ftrue; falseg, then ŝ(t= u) = s(t= u). Otherwise,E = fx1 = t1; : : : ; xm = tmg. Let V ars := vars(t) [ vars(u). Then for each vi 2 V ars occurring in a tj ,introduce a fresh variable yi, add vi = yi to E and replace vi with yi in every tj . Finally, sort E accordingto # in time O(n+ n log n), where n= jVarsj. �2.5.2 Solvers and Quanti�cationSolvers are applied to unquanti�ed equations over some logical theory in general. An immanent question ishow they could deal with quanti�ed formulas. And the answer is, surprisingly, that they already do. Whatserves as an example here is the TQBF -Problem:De�nition 2.15 Let � :=Q1x1:Q2x2: � � �Qnxn:F (x1; : : : ; xn) be a fully quanti�ed boolean formula overvariables V := fx1; : : : ; xng where Qi 2 f8; 9g, i 2 f1; : : : ; ng and F (x1; : : : ; xn) is a n-ary boolean functionwith connectives ^, _ and :. Then the language containing all valid expressions is denoted withLTQBF := f�j� is a fully quanti�ed boolean formula; j= �g yTheorem 2.7: [Pap94, p.456, Theorem 19.1]The language LTQBF is PSPACE-complete.In particular, a variant of these language is of interest. A quanti�ed boolean term � over variablesV := fx1; : : : ; xng is in 3-conjunctive-normal-form (3CNF ), if� .=Q1x1: � � �Qnxn:(l11_ l12_ l13)^� � �^ (lm1_ lm2_ lm3) where lij 2 V [V , i = 1; : : : ;m; j = 1; 2; 3, Qk 2f8; 9g; k = 1; : : : ; n. The language L3CNF -TQBF is de�ned asL3CNF -TQBF := f���� is a fully quanti�ed boolean formula in 3CNF; j= �g:Corollar 2.8:L3CNF -TQBF is PSPACE-complete.Proof: See Appendix B.1. �



CHAPTER 2. BASICS 25Quanti�cation - IntuitivelyIn order to understand the idea of the following lemma, an intuitive approach to quanti�cation might be ofsome help. As well known there are two kinds of uantors: 8 and 9. Think of quanti�cation as a iterativessignment of the quanti�ed variables, beginning with the leftmost quantor.The 8 is inclined to express that the following statement is true no matter what you choose for the quanti�edvariable. In terms of a most general solution, this means that this choice is arbitrary.As for the 9, it is only required there there is at least one assignment that results in a valid statement. Thisfact is often expressed with a functional dependency, though strictly speaking, there might be multiple suchchoices. This circumstance is re
ected by means that, in a most general solution, one can construct a mostgeneral term with a dependency to terms previously introduced.The statement we are focusing on, is an equation. In the context of uni�cation, the iterative processdescribed would be equivalent with the search for the most general uni�er.Lemma 2.9: [Quanti�cation Lemma]Let T be an algebraic theory with equation and s be a solver for T . Then s can be transformedinto a decision procedure for fully quanti�ed equational terms over T .Moreover, if s 2 O(f) the decision procedure works in time O(f + js(t= u)j � log js(t= u)j).Proof: Given an quanti�ed equation Q1 x1: � � �Qn xn:t !=u, where Qi 2 f8; 9g and V = fx1; : : : ; xng is theset of variables occurring in t and u. Let ŝ be the verbose transformation of s with respect to the orderingx1 � � � � � xn. Then ŝ(t !=u) = 8><>: x1 = t1;...xn = tn 9>=>;A term ti, i = 1; : : : ; n is called unrestricted if� ti does not contain any constants� ti does not contain any fresh variables occurring in tj with j < i� ti does not contain the same fresh variable in more than one placedSince ŝ provides a most general form of any solution of t !=u, it does not apply unnecessary restrictionsin the choice of any variable. Universal quanti�cation is equivalent with the notion of \anything" andexistential quanti�cation with \something that can be expressed functionally" respectively.Therefore let I := fijQi = 8g. Then the closed formula Q1 x1: � � �Qn xn:t !=u is valid, if and only if for everyi 2 I , ti is unrestricted.It is clear how to extend this proof to frame solvers. �Consider, for example, the quanti�ed boolean formula � := 8x:9y:9z:(x _ y) = :z. A verbose solver ŝ withespect to x � y � z for this theory yields a solution of the formŝ(x _ y = :z) = 8<: x = ay = bz = :a ^ :b 9=;Obviously, only the choice of z is dependent on former assignments whereas the choices of x and y areunrestricted. Therefore, all quanti�cations result in a valid formula except those where z is universallyquanti�ed. In particular, � is valid.dThe intention here is that ti might be patterned with fresh variables for later reference, but theses patterns are not torestrict the free eligibility of values for ti with respect to its type. E.G. ti = a[1]
a[1] restricts ti to the values 0[2] or 3[2] andprevents values 1[2] and 2[2].



CHAPTER 2. BASICS 262.5.3 Solving BV
;bvecn is PSPACE-hardDe�nition 2.16 A function g : A! B, jg(a)j polynomial in jaj, is called A-hard, if the following languageis A-hard: Lg := fx j x is a pre�x of ha; bi 2 A�B with g(a) = bgIn particular, g is PSPACE-hard, if PSPACE � PLg , where PA denotes the class of languages thatcan be decided via polynomial oracle Turing machines with oracle language A. For a formal de�nition seee.g. [Pap94]. yAs an application of the Quanti�cation Lemma, a former result (Appendix A.2) is extended to the followingstatement: Let BV
;bvecn be the theory of bit-vectors with variable size and concatenation as the onlyoperation.Corollar 2.10:Solving BV
;bvecn is PSPACE-hard.Proof: [via Reduction of 3CNF-TQBF]Let � :=Q1x1: � � �Qnxn:F be an arbitrary quanti�ed boolean formula over x1; : : : ; xn. Then the matrix Fcan be encoded into a bit-vector equation f(F ) according to Appendix A.2. Though f introduces severalvariables, there is a one-to-one correspondence of each xj to the width of aj (xj = false i� jaj j= 1 andxj = true i� jaj j= 2). Note that jf(F )j (and also the number of introduced variables aj ; bj ; cj ; dj) is linearin jF j. Thus, the result of a solver enables us to check the validity of a quanti�ed formula�0 :=Q1a1: � � �Qnan:9 �all other variables in f(F )�: f(F )with a polynomial overhead in jf(F )j according to the Quanti�cation Lemma 2.9. Also, the output ofa solver s is necessarily polynomial in the number of original variables. Since � , �0, it holds thatL3CNF -TQBF 2 PLs . L3CNF -TQBF is PSPACE-complete, thus PSPACE � PLs . �



Chapter 3On Decidability Things are only impossible until they're not.(Jean-Luc Picard)Nothing is impossible for the man who doesn't have to do it himself.(A. H. Weiler)3.1 Where the Problems areIf we allow variable size of bit-vector variables, at �rst this does not seem to be a big deal. One can simplyintroduce dependent types bvecn, where n : IN . Also variable extraction of the form x[n][j : i], where i andj are variables as well, has an intuitive semantic. There are some type check constraints, sure, but in meansof linear algebraic terms. Moreover, if just the size is still unknown but restricteda, it is obvious that thewhole theory remains decidable.However, as it turns out, for unrestricted sizes n at least the intuitive approaches do not yield a positiveresult. This might be demonstrated on a rather \di�cult" example.3.1.1 Considering an ExampleExample 3.1Let x : bvecn; y; z : bvecm; b; c : bvec1. Consider the equationx 
 y=y 
 x(�) V y 
 c=c 
 y(�) V z 
 b=b 
 z(
) V z 
 1[1] 
 x=x 
 0[1] 
 y(�)Note that this conjunctive form serves but better readability, for the sizes of the upper and lower subtermsare known to be equal. The equation has no solution, but not for trivial reasons. Follow this train of thought:� Sub-equation (�) holds, if there is a term a 2 f0;1g+ with x = a+ ^ y = a+.� (�) implies that y has to consist of the very same bit, concatenated arbitrarily often.� (
) implies that z has to consist of the very same bit, concatenated arbitrarily often.aBy means of that for each variable x[n] there exists a �xed and known N such that n < N .27



CHAPTER 3. ON DECIDABILITY 28� As a consequence of the �rst two points, x consists of the (one) same bit as y.� In order to satisfy (�), the positions of 1[1] and 0[1] have to be di�erent.� If the 1[1] is relatively left to 0[1], then both bits 0 and 1 have to occur in x, which is impossibledue to the previous argument.� If the 1[1] is relatively right to 0[1], then 0 occurs in z and 1 occurs in y. Therefore, y = 0[m] andz = -1[m]. This leaves x no choice to be anything.Following this example, bit-vectors are interpreted as natural numbers as seen in 2.4.1.The equation in Example 3.1 would then be represented as
� := 8>>>>>>>>>>>><>>>>>>>>>>>>:

x � 2m + y = y � 2n + x^ y � 21 + c = c � 2m + y^ z � 21 + b = b � 2m + z^ z � 2n+1 + 1 � 2n + x = x � 2m+1 + 0 � 2m + y^ x < 2n^ y < 2m^ z < 2m^ b < 21^ c < 21It is clear from argumentation, that � j=IN ?; however, it is not obvious, if there is a calculus C strongenough to obtain � `C ?. Note that the equations above contain non-linear algebraic terms.To prove unsatis�ability, one can perform a case split on b and c. If b= 0 and c= 0, then � narrows to�(b=0;c=0) = 8>>>>>>>><>>>>>>>>:
x � 2m + y = y � 2n + x^ y � 2 = y ) y = 0^ z � 2 = z ) z = 0^ z � 2n+1 + 1 � 2n + x = x � 2m+1 + y^ x < 2n^ y < 2m^ z < 2mHere, the �rst line implies x= 0 and the fourth line yields therefore 2n = 0, which cannot be satis�ed.The three other cases are left to the reader.3.2 The Theory with Variable Length and Only ConcatenationThe �rst part of this section discusses decidability of a restricted theory of bit-vectors. This enables us tojudge the \di�culty" of the problem by means of the Chomsky hierarchy. The second part presents theactual decidability result.De�nition 3.1 Let BV
;bvecn be the bit-vector theory with the signatureh IN [ fbvecn ��n : IN+g;f0 :! bvec1; 1 :! bvec1g [ f
n;m : bvecn � bvecm ! bvecn+m ��n;m : IN+g iHere, dependent types of the form bvecn, where n is a natural variable, are allowed. yThe only predicate is equality. Since this section treats solving an equation t1 = t2 by means of recognizinglanguages, it is reasonable to introduce a language over f0;1; $g.L(t1=t2) := fx1$x2$ � � � $xn$term-string �� x1; : : : ; xn; term-string 2 f0;1g+gEach solution of our equation t1 = t2 is re
ected by a word in L(t1=t2) (and vice versa) as the xi stand forinstances of all occurring bit-vector variables and term-string is their instantiation of the pattern given inboth t1 and t2.



CHAPTER 3. ON DECIDABILITY 293.2.1 Term Representation via Context Sensitive GrammarsThe problem of solvability in BV
;bvecn can be expressed by means of a context sensitive grammar. Moreprecisely, given one equation t1 = t2 in BV
;bvecn , it is possible to e�ectively generate two context sensitivegrammars G1 and G2, such that each word w 2 L(G1) \ L(G2) represents a distinct model that satis�est1 = t2. Since we know that context sensitive languages are closed under intersection (cf. [Sch92a]), L(t1=t2)is still context sensitive.bMore precisely, given an equation t1 = t2, let V := vars(t1) [ vars(t2) = fx1; : : : ; xng. The constructionyields that L(Gi) only contains words over the alphabet f0;1; $g of the shapex1$x2$ � � �xn$tiwhere i 2 f1; 2g. The �rst part x1$ � � � $xn (referred to as the de�nition side) guarantees an identicassignment of the variables in both productions and ti yields a matching of both terms.Let countj(xi) be the number of occurrences of the variable xi in tj (j 2 f1; 2g; i 2 f1; : : : ; ng). A translationof a term t= obj1
obj2
� � � 
objm omits the 
-operators and replaces(i) each variable xi with kXi where k 2 f1; : : : ; count(xi)g denotes the kth occurrence of xi (counted fromleft to right),(ii) each constant by the corresponding string over f0;1g.An indexed translation also adds an index li 2 f0; 1g to every variable xi (i.e. kXi becomes kX0i or kX1i )and is denoted by translation(l1;:::;ln).Also, a set Omittedj := fi ��xi 2 V ^ xi 62 vars(tj)g is de�ned, for the non-occurring variables require aspecial treatment.The grammar contains two kinds of non-terminal symbols. The one denoted by a kX li explains as the kthoccurrence of the bit-vector variable xi, which eventually reduces to the letter l 2 f0; 1g at the rightmostposition. The other kind, symbolic k ~N i is used to carry information from left to right and is referred to asa walker. Here, N 2 f0;1g is the information (one bit), addressed to the recipient kXli. The walkers vanishwhen reaching the rightmost occurrence countj(i)X li .Lemma 3.1:Let t1 = t2 be an equation in BV
;bvecn with variables V := fx1; : : : ; xng of unknown width andlet Gj := hVj ;�; Pj ; Sji be the context sensitive grammar constructed as shown in Figure 3.1.cThen for j 2 f1; 2g: L(Gj) = fx1$ � � � $xn$tj ��xi 2 f0;1g+; i = 1; : : : ; ngProof: For sake of readability, in the following a grammar is understood as a generation system for wellformed words.(i) L(Gj) � fx1$ � � � $xn$tj ��xi 2 f0;1g+; i = 1; : : : ; ngThe production rules in (a) yields the proper shape of each resulting word. Since the right hand sides ofproduction rules in context sensitive grammars must not be smaller (i.e. in number of symbols) than theleft sides, the rightmost letter to which each variable transforms has to be chosen a priori (and is added asbWe can e�ectively construct the grammar for L(t1=t2), e.g. via transforming both G1 and G2 to their correlated linearbound automatons, then perform a series connection of both automatons and and transform the result back to an context freegrammar. However, this is purely platonic.cWith respect to better readability, the concatenation of grammar symbols is sometimes marked by a \�".



CHAPTER 3. ON DECIDABILITY 30Vj := fkiX li �� i = 1; : : : ; n; ki = 0; : : : countj(xi); l = 1; 2g[fkj~0i �� i = 1; : : : ; n; ki = 0; : : : countj(xi)g[fkj~1i �� i = 1; : : : ; n; ki = 0; : : : countj(xi)g� := f0; 1; $g;
Pj := (a) fS!0X l11 $ � � � $0X lnn $translation(l1;:::;ln)(tj) �� li = 0; 1g[(b) fkX0i!0 �� i = 1; : : : ; n; k = 0; : : : ; count(xi)g[(c) fkX1i!1 �� i = 1; : : : ; n; k = 0; : : : ; count(xi)g[(d) f0X li!N �0 X li �1 ~Ni �� i = 1; : : : ; n; l = 0; 1; N = 0;1g[(e) fk ~Ni �k X li!N �k X li �(k+1) ~Ni �� i = 1; : : : ; n; k = 1; : : : ; count(xi); l = 0; 1; N = 0;1g[(f) fcount(xi) ~Ni �count(xi) X li!N �count(xi) X li �� i = 1; : : : ; n; l = 0; 1; N = 0;1g[(g) fk ~Ni �B!B �k ~Ni �� i = 1; : : : ; n; k = 1; : : : count(xi); N = 0;1; B 2 � [ VjnfkX0i ;kX1i gg(h) f0X li!N �0 X li �� i 2 Omittedj ; l = 0; 1; N = 0;1g[f0X li!N �� i 2 Omittedj ; l = 0; 1; N = 0;1gFigure 3.1: Context Sensitive Grammar Gj , Representing all Instances of Term tjan upper right index to each variable symbol). Rules (b) and (c) provide this �nal reduction.The big goal is now to allow a simultaneous growth of each occurrence of a variable. The problem here isto guarantee that each occurrence results in the same string. This is solved via allowing only the leftmostoccurrence of a variable to spontaneously produce a new letter (see (d)). At the same time, a walker ~N isproduced. It can jump over any symbol except the next occurrence of the same variable { there it resultsin a production of a proper letter and the creation of a new walker (cf. (g) and (e)). If the last occurrenceof a variable is reached, the walker vanishes, see (f). If a variable xi does not occur in the term tj , it stillhas to show up in the de�nition side. Since the walker rules do not allow a termination in this case, specialarbitrary production rules in (h) apply.(ii) L(Gj) � fx1$ � � � $xn$tj ��xi 2 f0;1g+; i = 1; : : : ; ngAs a short inspection reveals, the production terminates if and only if1. Each created walker moves strictly to the right and vanishes at the last occurrence of the speci�cvariable, thus guaranteeing that each occurrence is replaced with the same string over f0;1g,2. The variables not occurring in tj use only production rules in (h). �The reader may have noticed that the construction rules (b) � (h) assumes all bit-vector variables to haveunknown (and unbound) width. The variables of �xed or restricted width have to be treated as an exception.Since the range of these is �nite, each possible assignment can be added as a corresponding production rulein (a), leading to an exponential (but still �nite) blow-up. This makes further treatment of these variablesin rules (b) - (h) a surplus.Lemma 3.2:The Language L(t1=t2) := L(G1) \ L(G2) is isomorphic to the set of all possible solutions of theequation t1 = t2.Proof: If a word w is in both L(G1) and L(G2), according to Lemma 3.1 the assignment of the variableson the de�nition side are the same and the constructed strings match. Thus, the assignment encoded in the



CHAPTER 3. ON DECIDABILITY 31de�nition side is a model for the equation t1 = t2.Vice versa, if there is a assignment A with A j= t1 = t2, the corresponding word w can be constructed inboth grammars. �Lemma 3.1 and Lemma 3.2 lead directly toTheorem 3.3:The set of solutions of any equation t1 = t2 in � can be represented via a context sensitivelanguage.3.2.2 An ExampleThis construction is applied to the equation in Example 3.1. The terms aret1 := x 
 y 
 y 
 c[1] 
 z 
 b[1] 
 z 
 1[1] 
 xt2 := y 
 x 
 c[1] 
 y 
 b[1] 
 z 
 x 
 0[1] 
 yFor b[1] and c[1] have �xed size, they are not translated to variables in the grammar but result in a case splitin the production rules in (a) and remain untouched by the indexed translation. There are three variablesx; y; z of unknown size. With respect to better readability these are translated to X;Y; Zd and the walkerscarry an index x; y or ze. Thus, the translation yieldstranslation(lx;ly;lz)(t1) = 1X lx �1Y ly �2Y ly � c[1] �1Zlz � b[1] �2Zlz � 1 �2Xlxtranslation(lx;ly;lz)(t2) = 1Y ly �1Xlx � c[1] �2Y ly � b[1] �2Zlz �2X lx � 0 �3Y lyA complete de�nition of the grammar G1 = hV1; f0; 1; $g; P1; S1i is given in Figure 3.2. G2 is constructedin the same way. Each of both grammars contain 32 variables and 472 rules. Note that we know fromconstruction that L(G1) \ L(G2) is empty.3.2.3 L(t1=t2) is not Context FreeTheorem 3.4:In general, the result language L(t1=t2) is not context free.Proof: We can present a quite simple equation yielding a result language L(t1=t2) which is not contextfree. This is proven by application of the pumping lemma for context free languages. Lett1 := 0
x
 y
 z 
 x
1
xt2 := x
 y
 z
0 
 y
1
 zThe width of each variable is unknown. The only purpose of the left part of both terms is to guarantee thatx; y; z 2 f0g+, whereas the right part yields that x; y and z are of the same size. Therefore,L(t1=t2) = f0i$0i$0i$ 0i10i �� i = 1; 2; 3; : : :gAssuming L(t1=t2) is context free, from the pumping lemma follows that there exists a n such that8w 2 L(t1=t2); jwj > n; w = abcde : 8j : wj := abjcdje 2 L(t1=t2)dInstead of X1, X2 and X3 respectively.eInstead of 1, 2 or 3.



CHAPTER 3. ON DECIDABILITY 32V1 := f 0X0; 1X0; 2X0; 0X1; 1X1; ;2X1;0Y 0; 1Y 0; 2Y 0; 0Y 1; 1Y 1; 2Y 1;0Z0; 1Z0; 2Z0; 0Z1; 1Z1; 2Z1;1~0x; 2~0x; 1~1x; 2~1x1~0y; 2~0y; 1~1y; 2~1y1~0z; 2~0z; 1~1z; 2~1z gP1 := f S1!0X0$0Y 0$0Z0$ 0 $ 0 $ 1X0 � 1Y 0 � 2Y 0 � 0 �1Z0 � 0 �2Z0 � 1 �2X0S1!0X1$0Y 0$0Z0$ 0 $ 0 $ 1X1 � 1Y 0 � 2Y 0 � 0 �1Z0 � 0 �2Z0 � 1 �2X1...S1!0X1$0Y 1$0Z1$ 1 $ 1 $ 1X1 � 1Y 1 � 2Y 1 � 1 �1Z1 � 1 �2Z1 � 1 �2X10X0!0; 1X0!0; 2X0!0; 1X1!1; 1X1!1; 2X1!1;0Y 0!0; 1Y 0!0; 2Y 0!0; 1Y 1!1; 1Y 1!1; 2Y 1!1;0Z0!0; 1Z0!0; 2Z0!0; 1Z1!1; 1Z1!1; 2Z1!1;0X0!0 �0X0 �1 ~0x; 0X0!1 �0X0 �1 ~1x; 0X1!0 �0X1 �1 ~0x; 0X1!1 �0X1 �1 ~1x;0Y 0!0 �0Y 0 �1 ~0y; 0Y 0!1 �0Y 0 �1 ~1y; 0Y 1!0 �0Y 1 �1 ~0y; 0Y 1!1 �0Y 1 �1 ~1y;0Z0!0 �0Z0 �1 ~0z; 0Z0!1 �0Z0 �1 ~1z; 0Z1!0 �0Z1 �1 ~0z; 0Z1!1 �0Z1 �1 ~1z;1~0x �1X0!0 �1X0 �2 ~0x; 1~1x �1X0!1 �1X0 �2 ~1x; 1~0x �1X1!0 �1X1 �2 ~0x; 1~1x �1X1!1 �1X1 �2 ~1x;1~0y �1Y 0!0 �1Y 0 �2 ~0y; 1~1y �1Y 0!1 �1Y 0 �2 ~1y; 1~0y �1Y 1!0 �1Y 1 �2 ~0y; 1~1y �1Y 1!1 �1Y 1 �2 ~1y;1~0z �1Z0!0 �1Z0 �2 ~0z; 1~1z �1Z0!1 �1Z0 �2 ~1z; 1~0z �1Z1!0 �1Z1 �2 ~0z; 1~1z �1Z1!1 �1Z1 �2 ~1z;2~0x �2X0!0 �2X0; 2~1x �2X0!1 �2X0; 2~0x �2X1!0 �2X1; 2~1x �2X1!1 �2X1;2~0y �2Y 0!0 �2Y 0; 2~1y �2Y 0!1 �2Y 0; 2~0y �2Y 1!0 �2Y 1; 2~1y �2Y 1!1 �2Y 1;2~0z �2Z0!0 �2Z0; 2~1z �2Z0!1 �2Z0; 2~0z �2Z1!0 �2Z1; 2~1z �2Z1!1 �2Z1 g [f 1~0x �B!B �1 ~0x ��B 6= 1X0 ^ B 6= 1X1 g [ f1~1x � B!B �1 ~1x ��B 6= 1X0 ^B 6= 1X1 g [f 2~0x �B!B �2 ~0x ��B 6= 2X0 ^ B 6= 2X2 g [ f2~1x � B!B �2 ~1x ��B 6= 2X0 ^B 6= 2X2 g [f 1~0y �B!B �1 ~0y ��B 6= 1Y 0 ^ B 6= 1Y 1 g [ f1~1y �B!B �1 ~1y ��B 6= 1Y 0 ^ B 6= 1Y 1 g [f 2~0y �B!B �2 ~0y ��B 6= 2Y 0 ^ B 6= 2Y 2 g [ f2~1y �B!B �2 ~1y ��B 6= 2Y 0 ^ B 6= 2Y 2 g [f 1~0z � B!B �1 ~0z ��B 6= 1Z0 ^B 6= 1Z1 g [ f1~1z � B!B �1 ~1z ��B 6= 1Z0 ^B 6= 1Z1 g [f 2~0z � B!B �2 ~0z ��B 6= 2Z0 ^B 6= 2Z2 g [ f2~1z � B!B �2 ~1z ��B 6= 2Z0 ^B 6= 2Z2 gFigure 3.2: Variables and Rules of G1For any n there exists a word w in L(t1=t2) with jwj > n; however, alone w2 is not in L(t1=t2), since thiswould implyCase 1: Either b or d contain a $ symbol - then w2 contains more than three $s and is therefore notin L(t1=t2).Case 2: Neither b nor d contain a $. If one of them is on the de�nition side, the condition jxj = jyj = jzjcannot be maintained and else the translation term is not sound with the instances of thevariables; in any case, w2 62 L(t1=t2).Therefore, the pumping lemma cannot hold in general and as a consequence L(t1=t2) cannot be context free.�



CHAPTER 3. ON DECIDABILITY 33Note: This negative result is proven by exploiting the special structure of words in the result languageL(t1=t2). However, it is clear how to enhance it on general representations of any solution language.3.2.4 An Interpretation of this ResultBy means of the construction presented, the satis�ability problem can be reduced to the emptiness problemof languages of type 1 according to the well-known Chomsky hierarchy. Unfortunately, the emptiness prob-lem is undecidable in general for languages of type 1 (cf. [Sch92a, p. 83]). Thus no general algorithm can bepresented that could be used as a solver.On the other hand, the reduction is not an isomorphism, thus this result does not imply the general impos-sibility of solving BV
;bvecn . The author has to admit this is quite unful�lling { however, it might give ahint to the \di�culty" of solving even these restricted bit-vector equations.3.2.5 L(t1=t2) is DecidableAs a matter of fact, the problem de�ned in section 3.2 occurres in a number of mathematical �elds in adi�erent shape|su�ciently disguised to prevent a unique notion of it. Mathematicians of western countriesrefer to it as L�ob's problem by means of solving word equations over a free monoid (investigated by Lentinand Sch�utzenberger in 1969). In eastern countries it was referred to as Markov's problem and in the �eld ofautomated deduction as the string uni�cation problem. This diversion may display both fundamentelnessand non-triviallity of this speci�c problem. For a more elaborate overview confer to [GHR93], uni�cationtheory, chapter 5.The positive result that L(t1=t2) is decidable, derives from the decidability result for arbitrary singleequations in a free monoid G.S. Makanin presented in 1977. For a description see [Mak92]. More interestingin our context is the result of Ja�ar [Jaf90], where an algorithm for construction of all models is given.The actual complexity class of L(t1=t2) is unknown, but known to be NP -hard [Benanav et al. 1985].Independently, this fact was shown in 1996 by the author, confer to Appendix A.2. The actual complexity ofMakanin's algorithm is a lot worse: It is nondeteministic double exponential in the exponent of periodicityof a minimal solution of the equation [Ja�ar, 1990].3.3 An Unsolvable ProblemThe theory of bit-vectors with variable width together with concatenation, boolean operations and vari-able extraction is not solvable by means that a complete frame solver cannot exist. This is shown by atransformation of the halting problem on empty tape to a quanti�ed bit-vector term. The existence of asolver would|together with the Quanti�cation Lemma 2.9|yield a decision procedure for this undecidableproblem.3.3.1 Turing Machines (cf. [Sch92a])A deterministic Turing machinef M is a 6-tupleM = (S;�; �; s0; ; sT )where� S is a �nite set of states� � is the alphabet� � : S � �! S � �� fL;R;Ng is the transition functionfThe applied restrictions are without loss of generality.



CHAPTER 3. ON DECIDABILITY 34� s0 2 S is the initial state� 2 � is the blank symbol� sT is the (only) accepting terminal stateA con�guration is a tuple (s; p; q) where s 2 S and p 2 ��; q 2 �+. Intuitively, at this point of time theTuring machine is in the internal state s and the read/write-head is right of p and on the �rst symbol of q.The tape is considered in�nite to both sides, i.e. left from p and right from q there are but blanks.The binary relation ` (\computes to") is de�ned as follows:(s; a1 � � � al; b1 � � � bm) ` 8<: (s0; a1 � � � al; db2 � � � bm) if �(s; b1) = (s0; d;N)(s0; a1 � � � al�1; aldb2 � � � bm) if �(s; b1) = (s0; d; L)(s0; a1 � � � ald; b2 � � � bm) if �(s; b1) = (s0; d; R)Together with two special cases(s; "; b1 � � � bm) ` (s0; "; db1 � � � bm) if �(s; b1) = (s0; d; L)(s; a1 � � � al; b1) ` (s0; a1 � � � ald; ) if �(s; b1) = (s0; d; R)Intuitively, if the available tape is exceeded, some blanks are supplied.An accepting computation on x is a �nite string k0$k1$ � � � $kn where each ki is a con�guration, k0 = (s0; "; x),kn = (sT ; "; ) and 8i 2 f0; : : : ; n� 1g: ki ` ki+1.Theorem 3.5:Given a Turing machine M . It is undecidable whether there exists an accepting computation onthe string .Confer for example to [Sch92a, p. 121].3.3.2 Encodings of ComputationsAn accepting computation can be encoded via bit-vector terms with unrestricted size, variable extractionand boolean operations. In particular, given a Turing machine M , one can compute a bit-vector equation�(M) with: M stops on empty tape i� �(M) is satis�ableEncoding the Alphabet �Let � be an arbitrary alphabet with 2 �. Without loss of generality there exist three special characters\h", \i", \#" 62 �. Let �0 := � [ fi;#g; �00 := � [ fh; i;#g. Since we also want to encode states with0=1-strings and a encoding of static size is desired, we de�ner := max�dlog2(j�0j)e+ 1; dlog2(jSj)e+ 1�Then each letter of �0 can be encoded via a String in f0; 1gr�1. De�ne a mapping ' : �00 [ S ! f0; 1grwhere ' : �0 ! 0 � f0; 1gr�1with ' : # 7! 0rand ' : h 7! 1rand ' : S ! 0 � f0; 1gr�1' is chosen injective with respect as well to �00 as to S, though not to �00[S. The extension of ' to (�[S)�is denoted with '̂.It is crucial for the following argumentation that the encoding of \h" is the only one beginning with a \1".



CHAPTER 3. ON DECIDABILITY 35Encoding State TransitionsThere has to be a method to encode the \correctness" of a computation step by means of \matching"con�gurations ki and ki + 1. There following di�culties are encountered:� it has to be possible for characters to \swap" to the other side of the read/write-head� sometimes it is necessary to \pump" some blanks in or - if we encountered the end of the tape - deletesome blanks.Informally, the relevant point of any computation step can be coded to bit-vectors likes[r]; [� � �a[r]]; [b[r]c[r] � � �] ` s0[r]; [� � � a0[0jrj2r]]; [d[r]c0[0jrj2r] � � �]where d[r] is the new character under the read/write-head and a0[0jrj2r],c0[0jrj2r] are the end of the precedingtape (respectively the beginning of the succeeding tape). The notation [0jrj2r] is meant to indicate thateither of these three sizes is possible. Note that the actual \correct" value is dependent on �.Instead of a0[0jrj2r] consider the string a00 := a0[0jrj2r]
1
02r. Though the size of a00 remains unknown, allrelevant information is contained in the leftmost 2r bits. Moreover, since the \padding" on the right side isterminated with a \1", it is possible to reconstruct content and size of a0[0jrj2r] from the lower 2r + 1 bits.This trick is used to perform the following de�nition:valid��s[r]; a[r]; b[r]; c[r]; s0[r]; (a0[0jrj2r]
1
02r)[0 : 2r]; d[r]; (c0[0jrj2r]
1
02r)[0 : 2r]� :=� 1[1] if (s; � � �a; bc � � �) ` (s0; � � � a0; dc0 � � �)0[1] elseStrictly speaking, the input to valid� is a combination of r + r + r + r + r + 2r + 1 + r + 2r + 1 = 10r + 2bit-vectors of width 1. It is clear that, given �, a corresponding boolean function resulting in a bit-vector ofwidth 1 can be constructed.Encoding ComputationsThe whole encoding idea works as follows:� Guess a string encoding an accepting computation,� Verify that each step of the computation is correct.Here we have got the problem of separators|informally, they cannot be encoded reliable. More precisely,one cannot encode an arbitrary string not containing the encoding of a special character. This problem isavoided by introducing a \step counter". This is a string over f#g+, increasing with every step by one \#".The kth computation step (s; � � � a; bc � � �) ` (s0; � � � a0; dc0 � � �) is represented ashs[r]#kip[?�r]a[r]#kb[r]c[r]q[?�r]hs0[r]#k+1ip[?]a0[0jrj2r]#k+1d[r]c0[0jrj2r]q[?�r]The term #k is not a valid bit-vector term itself, but can be replaced by one. Since ' maps # to 0r, this canbe matched by a bit-vector term k[?�r] consisting entirely out of 0s. This property, though, can be enforcedby adding the simple equation k[?�r]
0[1] !=0[1]
k[?�r]. Thus, the term above is really represented ashs[r]k[?�r]ip[?�r]a[r]k[?�r]b[r]c[r]q[?�r]hs0[r]k[?�r]0rip[?]a0[0jrj2r]k[?�r]0rd[r]c0[0jrj2r]q[?�r]Dealing with Large AlphabetsThe aspired formula is be roughly something like9w[n�r]8i > const9j : w[n�r][j : i] = hkth state:::h(k+1)th state:::



CHAPTER 3. ON DECIDABILITY 36However, this can not be achieved straight-forwars.The ith character of w[n�r] is required to be a \h"|this cannot be true for all i. The �rst idea is to introducesome padding in front of \hkth state:::" to allow the matching to slip to the next \h". But this is not asolution. Since the computation is arbitrary long, the encoded tape cannot be restricted. Therefore, thelength of the padding cannot be restricted in general as well. This means, that the matching could slip toany next \h", thus destroying the correctness condition, for \nonsense steps" could exist that this formulawould not encounter as failures.The second thought is to avoid certain bit-patterns in the padding, thus introducing something like separa-tors. As stated above, this does not seem to be possible in general for alphabets larger than j�j= 2.However, the following idea works: If the �rst character is not a \h", the whole matrix evaluates to a trivialequation at once. Let t[m] !=u[m] be the original matrix equation. Then this idea is realized by the followingdetour:� Instead of t[m] !=u[m], equivalently state :(t[m] � u[m]) !=0[m] .� Due to the special encoding of \h", the extraction [j : i] matches an \h", i� w[n�r][i : i] = 1[1].� Let v[m] be another bit-vector variable� v[m] can be \forced" to consist purely of the same bit like w[n�r][i : i] viav[m]
w[n�r][i : i] !=w[n�r][i : i]
v[m]� Thus, :�(t[m] � u[m]) _ v[m]� !=0[m] is satis�ed either if� t[m] and u[m] can be made equivalent,or � the term w[n�r][j : i] does not start with \h".We are now ready to take a look at the complete formula.The Reduction FormulaLet M be a Turing machine and valid� the corresponding boolean function. Then a bit-vector equationw[n�r] encoding an accepting computation is encoded in the following quanti�ed formula �Q(M):9n 2 IN; n > 1:9lw 2 IN:9w : bveclw�r:9lw0 2 IN:9w0 : bveclw0 �r:8i 2 IN:9j > i:9v : bvec(j-i+1)�r:9lk 2 IN:9k : bveclk�r:9lp 2 IN:9p : bveclp�r:9lq 2 IN:9q : bveclq �:9a : bvecr:9b : bvecr:9c : bvecr:9la 2 IN0; la < 2:9a0 : bvecla�r:9d : bvecr:9lc 2 IN; lc < 2:9c0 : bveclc�r:v
w[i�r : i�r] !=w[i�r : i�r]
v^ valid��s; a; b; c; s0; (a01[1]0[2r])[0 : 2r]; d; (c01[1]0[2r])[0 : 2r]� !=1[1]^ :��'(h)sk'(i)pakbcq'(h)s0k0[r]'(i)pa0k0[r]dc0q � w[i�r : j �r]� _ v� !=0[(j�i+1)�r]^ '̂�hs0#i # �
w0
'̂�hsT#ni #n � !=wThe same formula without quanti�cation is referred to as �(M).With respect to better readability the matrix is written as a conjunction. However, it can easily be veri�edthat this conjunction can be written equivalently as one equation, whereO(left hand sides) !=O(right hand sides):Lemma 3.6: [Turing Simulation]An accepting computation of M exists i� �Q(M) is valid.



CHAPTER 3. ON DECIDABILITY 37Proof: ): Assume K := k0$k1$ � � � $kn is an accepting computation. Then K can be transformed into abit-vector w[lw �r] := �(k0)
�(k1)
� � � 
�(kn), where�(si; pi; qi) = '̂�h si#iipi#iqi�Then, for each step an extraction w[lw�r][i : j] exists. Thus, �Q(M) proves to be valid with respect to thequanti�cation and according to the Quanti�cation Lemma 2.9.(: If �Q(M) proves to be valid, a bit-vector w exists that can be transformed via '�1 into an acceptingcomputation. �3.3.3 The Non-Existence TheoremThe preceding observations lead to the main theorem of this section:Theorem 3.7: [Non-Existence Theorem]There is no complete frame solving algorithm for the theory of bit-vectors with variable width,variable extractions and boolean operations.Proof: Assume such an algorithm s exists. Then, given an arbitrary Turing machine M , s(�(M)) yieldseither false, true or a set of frames representing a most general solution. In the �rst case, no acceptingcomputation exists. In the later two cases the application of the quanti�cation lemma (2.9) allows to checkthe validity of the quanti�ed formula �Q(M). According to Lemma 3.6, a computation exists if and onlyif �Q(M) is valid. Thus the halting problem of M on the empty tape can be decided. This yields thecontradiction. �3.4 SemaphoreWe have seen that the solution of bit-vector equations is a task less trivial than it is desired. There seemsto be a natural di�erence between solving in theories with �xed or unknown size. In particular, no completeclassic solver can exist for the later one (cf. Example 2.6).This motivates the further proceeding: The next chapter is dedicated to the discussion of solving �xed size.Some approaches are presented and compared with respect to their e�ciency. One of these is taken over tothe last chapter, discussing unknown size, and adopted to the requirements there.



Chapter 4Solving Fixed-Sized Bit-VectorEquations By three methods we may learn wisdom:First, by re
ection, which is noblest;Second, by imitation, which is easiest;and third by experience, which is the bitterest.(Confucius, 551-479 b.C.)In this chapter, three distinct approaches for solving �xed-sized bit-vector equations are explored and com-pared regarding expressiveness, e�ciency and possible extension to more general theories.4.1 Solving Bit-Vector Equations via Monadic LogicWeak monadic second order logic of one successor is used to express bit-vector equations. This languageis a decidable fragment of second order logic (cf. [B�uc62]). By means of the Mona Tool [BK95,HJJ+96]the formulae are transformed to �nite automata that can be utilized to construct a solver for the theory of�xed-sized bit-vectors with concatenation, extraction, boolean operations and arithmetic. Various run-timeexperiments are performed.4.1.1 In the Domain of WS1SWS1S stands for weak second order logic with one successor.De�nition 4.1 [The Language WS1S]The language WS1S consists of three syntactic categories, each of which contains variables, constants andexistential and universal quanti�cation:� booleans [0th order] including the usual boolean connectives,� positions [1st order] interpreted as natural numbers from 0 up to the upper bound $,� sets [2nd order] of positions, namely subsets of f0; : : : ; $g.Formulae in WS1S are de�ned in the usual way. Of special interest is the operation p+ n which is de�nedas a function on positions or sets, given the second argument n is a �xed integer number. The semantics of'+' is an increment respectively a family of increments of n steps to the right, applied on the �rst argument.y38



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 39pred at_least_two(var0 a, b, c) = (a & b) | (a & c) | (b & c);pred mod_two(var0 a, b, c, d) = (a <=> b <=> c <=> d);pred add2(var2 A, B, Result) =ex2 C: ((all1 p : (mod_two (p in A, p in B, p in C, p in Result)) &( (p+1 > 0) =>((p+1 in C ) <=>at_least_two(p in A, p in B, p in C)))) &(0 notin C));Figure 4.1: A Simple Ripple-Carry Adder in WS1SNote that the language WS1S is expressive enough to encode Presburger arithmetic (cf. [Pre29], [Bar93,Rabin: Decidable Theories]). If each set is understood as a collection of bits (starting at position 0 as theleast signi�cant bit), this results in an intuitive encoding of IN . Addition with two summands is encoded bymeans of a ternary predicate, simulating a ripple-carry adder (cf. Figure 4.1), extension to more summandsis straight-forward.4.1.2 Encoding Fixed-Sized Bit-Vector Equations in WS1SGiven a bit-vector equation t= u, an equivalent WS1S-formula is generated, which is then translated to acorrelated automaton. Finally, this automaton is used to generate a most general solution for t= u.De�nition 4.2 Let pad : $Si=1 bveci ! fWS1S{setsg be de�ned aspad(c[n]) := � i ��0 � i < n ^ c[n][i : i] = 1[1]	A bit-vector equation t= u and a WS1S-formula ' are called equivalent, if� The only free variables in ' are second order.� There exists an isomorphism  between Vt=u := vars(t) [ vars(u) and V' := vars(').� for all w1 : bvecm1 ; : : : ; wn : bvecmn :x1 = w1 ^ : : : ^ xn = wn j= t= u i�  (x1) = pad(w1) ^ : : : ^  (xn) = pad(wn) j= '. yLemma 4.1:For each bit-vector equation t= u, there exists an equivalent WS1S-formula '.Proof: [by Construction]Let t= u be a bit-vector equation with variables Vt=u = fx1[m1]; : : : ; xn[mn]g. Roughly, the constructionde�nes a conjunction � of WS1S formulas called axioms, a conjunction 	 of WS1S conditions and a secondorder equation T = U that is a translation of t= u to WS1S. A sketch of the construction of ' is given asfollows:� For each occurring length of subterms introduce a second order variable Filteri and add to �:all1 p: ((p < i) => p in Filteri) & ((i <= p) => p notin Filteri)� For each xi[mi] introduce a second order Variable V AR xi and add the following condition to 	:all1 p: (mi < p) => p notin V AR xi



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 40� For each constant c[n] introduce a second order Variable CONST n value, where all information aboutc[n] is added to �. For c[n] = 1[2] this would be:(all1 p: ((2 <= p) => (p notin CONST 2 1)))& (0 in CONST 2 1) & (1 notin CONST 2 1)� Replace concatenations t1[l1]
t2[l2] by a position shift of the right argument, followed by a union, like(t1) union (t2 + l1)� Replace extractions by intersections with the proper Filteri, eventually preceded by a position shift.E.G. x[8][5 : 2] transforms to(V ARx - 2) inter Filter4� Addition is simulated by means of a relation, i.e. an addition t1[l]+[l] t2[l] is represented as a constraintadd2(t1[l],t2[l],Result) in 	 and the sum in the WS1S-term is replaced by (Result inter Filterl).For additions with more than two arguments, the corresponding predicates add3, add4, ... areintroduced.� Boolean operations are �rst mapped into equivalent boolean formulae with the operator set :;^;_.These can be represented straightforward by theWS1S operations complement, intersection and unionrespectively.The actual WS1S formula to process is de�ned as' := ex2 Filteri ex2CONST i j : (� ^ (	) (T = U)))� contains properties of �lters and constants, thus guaranteeing the only correct interpretation is choosen bythe existential quanti�cation. 	 basically states that no variable does contain true-bits beyond it's width.The equivalence to t= u follows by inspection. �To give an example, the simple unsatis�able formula 1[1]
x[5] = x[5]
0[1] is transformed via the constructionin Lemma 4.1 to the equivalent WS1S formula in Figure 4.2.4.1.3 From Bit-Vector Equations to Finite AutomataIt is well understood, that WS1S is strongly related to regular expressions (cf. [vL90b, p.137]). This relationcan be expressed by means of �nite automata:De�nition 4.3 Let ' be a WS1S-formula with free second order variables V := fv1; : : : ; vng and upperbound $ of the position. Then a �nite n-tape automaton is called the correlated automaton A', if8w1; : : : ; wn � f0; 1; : : : ; $g : A'(w1; : : : ; wn) accepts i� fv1 = w1 ^ : : : ^ vn = wng j= ' yRoughly, for each ' 2WS1S, the Mona Tool computes the correlated automaton A'. If the formula ' wasunsatis�able or valid, A' accepts ; or �� respectively.Lemma 4.2: [Mona Construction]For each WS1S-formula ', the correlated automaton can be e�ectively constructed.Proof: Confer to [HJJ+96]. �Theorem 4.3:For each bit-vector equation t= u there exists a �nite automaton At=u such that1. At=u accepts �� if t= u is a tautology,2. At=u accepts ; if t= u is unsatis�able,3. At=u accepts �(w1; : : : ; wn) �� t[xi[mi] = wi] = u[xi[mi] = wi]	 else.Proof: By Lemma 4.1 and Lemma 4.2. �



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 41var2 VAR_X_5;ex2 CONST_1_1,CONST_1_0,Filter_5: (((all1 p: (((p < 5) => (p in Filter_5)) &((5 <= p) => (p notin Filter_5)))) &(all1 p: ((1 <= p) => (p notin CONST_1_0))) &(0 notin CONST_1_0) &(all1 p: ((1 <= p) => (p notin CONST_1_1))) &(0 in CONST_1_1) ) &(( ((all1 p: ((5 <= p) => (p notin VAR_X_5))) ))=> ( (CONST_1_1 union ((VAR_X_5 inter Filter_5) + 1))= ((VAR_X_5 inter Filter_5) union (CONST_1_0 + 5)) )) )Figure 4.2: WS1S Representation of the Unsatis�able Equation 1[1]
x[5]=x[5]
0[1]4.1.4 Constructing Solutions from AutomataThough an automaton represents an expressive encoding of a most general solution, it is desirable to computea solved form according to section 2.2.3. This can be performed generatively by means of introducing OBDDs(see De�nition 2.5). In the following a straight-forward algorithm is presented, that can be re�ned to yielda shorter representation of the solution.Lemma 4.4:For each �nite automaton A, a corresponding solved form can be constructed.Example 4.1 [Constructing the Solved Form]Consider the bit-vector equation x[2]+[2]y[2] !=2[2]. After translation to the equivalentWS1S formula,Monareturns a �nite automaton, which is reduced to a form omitting non-successful branches:
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Automaton as Constructed by Mona Reduced AutomatonThe upper symbol on each transition edge refers to variable x[2] and the lower symbol to y[2]. Acceptingnodes in a depth falling short the length of the smallest bit-vector variable are transformed to non-acceptingnodes. An accepting node can only occur in the depth matching the width of the longest variable, deepernodes and edges are deleted.The construction works bit per bit. The �rst bit of x[2] is unrestricted, for either choice can lead to theaccepting node. Thus, x[2][0 : 0] is set to a fresh variable �. Then, y[2][0 : 0] is necessarily � as well. Thiscompletes the computation of the leftmost bits, the old root (1) is deleted, leaving the two automata high-lighted grey.Starting at either of the new roots (2) or (4), the choice of x[2][1 : 1] is arbitrary and therefore set to �0.



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 42In the lower path (4)-(5), where � evaluates to true, y[2][1 : 1] has to be chosen opposite to �0, whereasin the upper path (2)-(5), it has to be identical with �0. This is expressed by means of the OBDDIte (� ; Ite (�0 ; 1 ; 0) ; Ite (�0 ; 0 ; 1)). The �nal result presents asx[2] = � 
 �0y[2] = � 
 Ite (� ; Ite (�0 ; 1 ; 0) ; Ite (�0 ; 0 ; 1)).Proof of Lemma 4.4: [by Construction]First, the reduced automaton is constructed, which is the initial element of a set � of reduced automata.The algorithm proceeds bit by bit, i.e. it traces breadth-�rst through every automaton in � in parallel,introducing fresh variables (if necessary) and checking dependencies respectively.Each step might|while deleting the root nodes|split the automata to several new rooted automata thatare stored in �. With each step, the representation of each concerned original variable grows by one bit, thatis either a constant, a fresh variable or an OBDD. For each original variable xi[mi], step j can be sketchedas follows:� Build an OBDD re
ecting the dependencies of the next choice for xi[mi][j : j]. It might be necessaryto introduce a fresh variable as well to represent ambiguities in a distinct branch of the OBDD (i.e. ifthere is no functional dependency of the jth bit of xi[mi]).� This OBDD might simplify to fresh variables or to a constant.� Append this OBDD to the so-far description of xi[mi], unless the width of xi[mi] was already exceeded.Continue until every automaton in � is reduced to the accepting node. The obtained description of eachoriginal variable is a complete and correct representation of a solution, but not necessarily the simplest one.�Optimization of the AlgorithmThere are two points where an optimization of the sketched algorithm can be applied. The major drawbackis the split-up to every single bit. This can be avoided by introducing the notion of hyper-edges, marked withstrings instead of characters. While clustering edges to hyper-edges, which are allowed to perform severaltransitions at once, a smaller but equivalent automaton is obtained.A second point is that the algorithm implicitly assumes that every variable is dependent on every other.Practically, this is rarely the case. It might be possible to split the original automaton into a set of smallerautomata, each only processing a disjoint set of original variables. The optimal partition can be found byan (possibly exhaustive) independency check, like \If y[i : i] is chosen arbitrarily, does this a�ect x[j : j] inany branch?" for all x; y; i; j.4.1.5 A Short Glimpse at the ComplexityThe complete transformation of a bit-vector equation to aWS1S formula leads to a moderate blow-up in size.Transformations of concatenations, extractions and even additions are performed in linear time, and yieldjust a linear overhead of introduced Filter and Result variables. The transformation of boolean operationsto equivalent expressions using only operators :;^;_ is possible with expense O(2n), if n is the number ofarguments in the original expression with any 1-ary and 2-ary connectives allowed. Not too bad. We cannotexpect to obtain a solver polynomial for all inputs anyway, at least if we are fond of the conjecture P 6= NP .Really time-consuming is the construction of the correlated automaton|though WS1S is decidable, thecomplexity of deciding a formula in general is staggering. As demonstrated in the following, realistic sizedexamples push the limits of this approach.



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 434.1.6 Run-Time ExperimentsA grid of (hopefully) representative examples was processed by means of Mona, incrementing the usageof operators as well as the width of the terms. Either results in a noticeable slowdown|surprisingly, thecapacity of Mona is soon exceeded. In particular, the usage of position shifts resulted in run-time errorsa,or|even worse|in a crash of the Mona program (as in example C1) at low width. The author does nothave a satisfying explanation for this behavior, since the operation itself is expected just to shift sets ofinternal variables by an �xed o�set.The experiments used an Allegro Common Lisp 4.3 translation algorithm presented in Appendix C.1 andwere executed on a 143MHz Sparc Ultra 1 Workstation. Measured was the run-time of the Mona program(Version 1.1), the translation time to WS1S formulae was neglected. The examples are grouped into threecategories A, B and C, each containing six plots. The �rst three plots are terms in the core theory togetherwith boolean operations, whereas the ones on the right-hand side allow addition as well.A. Checking TautologyThe equations processed in this category are tautologies. The task of detecting this is usually performedvia canonization, but as noted in section 2.3.2, canonization of boolean operations can be an expensiveoperation itself. Thus, the Mona tool had to check the equivalence of n-bit functions here. As observedin A3, a concatenation (expressed by means of position shifts) is a very consumptive operation, whereasaddition (A4-A6) is processed in reasonable time.B. Checking Unsatis�abilityFor unsatis�able equations, Mona eventually results in an automaton accepting ;. The way to obtain thisautomaton might be di�cult, though. Again, concatenation (B1) yields a bad performance, whereas theexamples involving logic an addition take at most 65 seconds.C. Satis�able EquationsThe equations in this category are satis�able, but not valid. The time measured does not include the back-translation of the automaton to a solved form, but the gained automata encode the most general solution.Position shifts are once more a problem, caused by an extraction in case C1. It might be surprising, thatthe behavior in examples C4-C6 was roughly the same as e.g in B4-B6, though the resulting automata arefar more complicated here.

aIn examples A3, B1, C2 and C3 Mona returned at width 16 the error message \Memory management library: error:mem get block: allocation failed".
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x[n][0 : n-1]Table 4.1: Checking Tautologies via Mona
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0)n2Table 4.2: Checking Unsatis�ability via Mona
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0[2] C6: x[n]+[n]y[n] !=x[n]XORy[n]Table 4.3: Satis�able Equations via Mona



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 474.1.7 Extension to Larger Theories?The WS1S representation of bit-vector equations works for �xed size. Why can x[n] not be encoded ina similar way, if n is unknown? Of course, one parameter n can be allowed, if t and u contain but oneparameterized variable at the rightmost position. Then, not WS1S but S1S formulae are constructed.However, this attempt covers only a small family of equations and the usability is therefore questionable.The crucial point is, that in order to encode a concatenation, one has to perform a shift on the bit positionsof some variable. These shifts are WS1S, i� they are constant. While trying to perform variable shifts, aserious problem is encountered. In order to represent terms like Set + var, it is vital to introduce a semanticof a shift by a natural number. The only way to encode this, is by means of a second order variable.If second order variables are used to encode as well the values as the width of a bit-vector, there is anambivalence. It has to be stated which is which. At least if the proposed encoding is followed, there seemsto be no way to cross this obstacle. According to the author's estimation, these di�culties are invariantunder modi�cation of the encoding.How about using a stronger version of monadic logic, namely WS2S? Here we have a kind of tree logic, i.e.monadic theory with two successor functions. Though this is one of the most powerful theories known to bestill decidable (cf. [BGG97]), the task of encoding bit-vector theory into it failed for the following reasons:� We have to represent bit-vector variables as objects of arbitrary size. This can only be performed bymeans of exploiting the tree depth.� In order to express a concatenation, it has to be possible to \stick" one bit-vector to the end of theother one. Thus, \the end" has to be known or marked.� We can describe distinct positions in a tree, but the term structure allows no shift of a uncertainamount of positions.These are just arguments and not a proof that the proposed task is mutually impossible.4.1.8 SemaphoreMonadic second order logic provides a system powerful enough to encode and solve bit-vector equations.Concerning boolean connectives or simple arithmetic it shows a reasonable response time, but positionshifts seem to add enormously to this complexity. This indicates that WS1S does not adapt closely to thepeculiarities of the theory of bit-vectors, where concatenations and extractions are used exhaustively. Inaddition, it remains unclear how to extend the notion in a way to express variable width of bit-vectors ingeneral. This motivates the search for other approaches, adapting closer to the characteristics of bit-vectorterms.4.2 Solving via an Equational Transformation SystemSolving is, from a certain point of view, extrapolation of information. Thus, while processing an equation,nothing is added actually, but brought into a more convenient form. This motivates to develop a solver justby means of transforming information, until a �x point|the solved form|is reached.In this section, a simple equational transformation system is presented, that can be utilized as a solver forthe core theory. It builds a basis for extension to boolean operations, arithmetic or variable width.



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 484.2.1 Equational Transformation SystemsDe�nition 4.4: [Equational Transformation System]A equational transformation rule R is a formulafp1 = q1; � � � ; pn = qn g ; pred(p1; q1; : : : ; pn; qn) � fl1 = r1; � � � ; lm = rmg:where pred is a 2n-ary predicate. If pred is omitted, it is supposed to be the constant true. The setfp1 = q1; � � � ; pn = qn g is referred to as lhs(R) and fl1 = r1; � � � ; lm = rmg is denoted by rhs(R).A matching (M; �) with respect to a equational transformation rule R is a set M of bit-vector equationstogether with an substitution � , such that �(M) .= lhs(R) ^ pred(M).A equational transformation system or ETS is a set < of equational transformation rules. It operates on aset � of bit-vector equations. In this context it is understood that for a matching (M; �) with respect toR 2 <, � updates to �  �� n ��lhs(R)�� [ ��rhs(R)�:A set � is called terminal with respect to <, if there exists no matching in � with respect to a R 2 <. y4.2.2 A Simple Strategy: Reduced ChopperBit-vector terms that are either variables, extractions on variables or constants are called chunks. The CTRSpresented in this section orientates on theConcept of the Largest Chunks:Treat only the chunks with the highest possible width as distinct objects.Let x[n] and y[m] denote bit-vector variables, p[n] and q[m] represent chunks and s[n], t[k] and u[l] stand forgeneral bit-vector terms. The index of terms denotes their overall width. In the core theory these are in fact�xed numbers. Constants are represented as de�ned in section 2.1.The underlying data structure is a set � of bit-vector equations. Some equational transformation rules justtransform one equation to a set of other equations, some require two equations to perform a match. Theequational transformation system presented in Figure 4.3 is called reduced chopper and is abbreviated byC<. In order to explain how it works, it is necessary to introduce some special notions.De�nition 4.5 A coarsest slicing rule or short CS-rule is a bit-vector equation of the form p[n] = s[n],where p[n] 6 .= s[n] but p[n] .= �(s[n]).An initial CS-rule set with respect to t= u or short init-CS(t= u) is de�ned asinit-CS(t= u) := �p[n] = s[n] �� p[n] = s[n] is a CS-rule that can be built with chunks in t and u 	For example, if x[4][0 : 1] occurs in t= u, init-CS(t= u) contains the CS-rule x[4] = x[4][0 : 1]
x[4][2 : 3].Let t= u be a bit-vector equation on the variables x1[m1], ..., xn[mn]. A solved set �? with respect to t= uis a set of equations on x1[m1], ..., xn[mn] where the following holds:1. vars��?) � vars(t) [ vars(u),2. �? j= t= u and t= u j= �? ,3. for each xi [mi] 2 vars(�?), there exists an equation xi[mi] = t[mi] 2 �?, which is not a CS-rule,4. �? is terminal with respect to t= u. yA solved set is not a valid solution according to section 2.2.3, since the same variable might occur on bothsides of an equation. However, a solved form can be easily obtained.Lemma 4.5:Given a solved set �?, a solved form �0? according to 2.2.3 can be constructed, such that�? j= �0? and �0? j= �?
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t= q[n]
u � � p[n] = q[n]t= u �(10) p[n]
t= q[m]
u; n < m � 8<: p[n] = �(q[m][0 : n� 1])�(q[m][n : m� 1])
u= tq[m] = �(q[m][0 : n� 1])
�(q[m][n : m� 1]) 9=;(100) p[n]
t= q[m] � 8<: p[n] = �(q[m][0 : n� 1])�(q[m][n : m� 1]) = tq[m] = �(q[m][0 : n� 1])
�(q[m][n : m� 1]) 9=;(1000) q[m] = p[n]
t � 8<: p[n] = �(q[m][0 : n� 1])�(q[m][n : m� 1]) = tq[m] = �(q[m][0 : n� 1])
�(q[m][n : m� 1]) 9=;(2) c[n] = c0[n] ; c 6= c0 � FAIL(3) t= t � fg(4) � p= tq = u � ; q � t � � p= t[q=u]q = u �(5) � p= qq = r � � � p= rq = r �(6) � p= qq = p � � f p= q g(7) � p= tp= u � � � p= tu= t �(8) c= t; t 6= const � f t = c gFigure 4.3: Reduced Chopper C< { A ETS for Solving Bit-Vector EquationsProof: Replace all occurrences of extractions on variables on the right hand sides of the terms xi[mi] = t[mi]in �? by fresh variables to obtain �0?. �Theorem 4.6:Let t= u be a bit-vector equation BV
;[1:1]. Started on ft = ug [ init-CS(t= u) , the equationaltransformation system C< always terminates with a solved set.Proof Sketch:� By inspection, the equational transformation rules (1)-(8) are equivalence-preserving, in the sense thatthe replacement of the matchings with the right hand sides does neither introduce new nor omit existinginformation. Thus, given termination, the result is a solved set.� Termination follows from the observations(a) The rules (1)-(1000) actually decrease the width of the involved terms; thus, they can be appliedonly a �nite number of times.(b) Rules (2), (3) and (6) yield a smaller set �.(c) Rules (4), (5), (7) and (8) do not enlarge �. Together with (6) they build up a kind of union-�ndstructure, which is loop-free and thus terminates. �
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[n]A1: c[n] != c[n] A3: x[n2 ]
y[n2 ] !=x[n2 ]
y[n2 ]
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[s]

[n]A2: x[n] !=x[n] B1: x[n2 ]
x[n2 ] !=1[n]Table 4.4: Checking Tautology and Unsatis�ability via Reduced Chopper4.2.3 Run-Time Experiments with C<C< is implemented in Common Lisp by means of a match-and-rewrite strategy on a set of equations. Thealgorithm applies the rules (1)-(8) in an randomized order, thus the run-time performance is rather a hintthan an accurate characterization. The measured time|again on a Sparc Ultra 1 Workstation|includesthe computation of init-CS(t= u). Since boolean operations or arithmetic are not included, some of theexperiments in section 4.1.6 can not be processed. Tautologies and unsatis�able equations are displayed inTable 4.4 and satis�able but not valid formulae in Table 4.5.C< shows a good performance on simple equations that involve concatenations like B1. It deals only withthe largest chunks possible, so run-time increases not necessarily with term width (as demonstrated inexamples B1, C1 and C2). This yields much faster results than the procession via WS1S (cf. pages 44�).On the other hand, it is rather expensive to split up a wide variable to numerous bits, as seen in C3 andC3b. This is explained by the growing number of CS-rules.
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[s]

[n]C2: x[n2 ]
y[n2 ] != y[n2 ]
z[n2 ] C3b: 0[2]
x[n-2] !=x[n-2]
0[2]Table 4.5: Satis�able Equations via reduced chopper4.2.4 SemaphoreThe reduced chopper algorithm is understood as the basis of a real e�cient solver. The following drawbacksare to mention:� Nondeterminism - the guessing of the next step is a time-consuming feature.� Explicitness of slicing information - the storage of all occurring CS-rules in � can lead to an exponen-tial blow-up in the number of equations, for there are 2n-1-n possible CS-rules concerning the termx[n][0 : 0]
 � � �
x[n][n-1 : n-1].� Lack of boolean operations, arithmetic and variable width.It is not reasonable to expect a solving concept to be as well most general and e�cient. An argument in favorof this is the Non-Existence Theorem 3.7. Thus, the extension forks in two ways. First, Construct an e�cientsolving algorithm for �xed size on the basis of the reduced chopper; this should allow boolean operations



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 52and arithmetic. This is done in the following section. Second, Expand the equational transformation systemin a way that allows processing of bit-vector terms with variable width, thus constructing a frame solver.This is what the next chapter is about.4.3 The Operationalization: Fixed SolverThe concept of the largest chunks|as applied in the previous section|is extended to an e�cient anddeterministic representation of the reduced chopper algorithm. Simultaneously, boolean operations andarithmetics are added. The resulting algorithm is referred to as �xed solver.In order to operationalize the reduced chopper, it is necessary to introduce a new paradigm: the distinctionbetween left-hand side and right-hand side of an equation. Roughly, the left-hand side is reserved to originalvariables, and on the right-hand side there are constants and fresh variables. Fresh variables|in the followingdenoted with a[n], b[n], d[n] and e[n]|are introduced in order to express equality of chunks of original bit-vector variables. Consider, for example, x[8] = a[4] 
 0[4]y[16] = b[12] 
 a[4]These equations express that x[4] starts with the same four bits (denoted as y[16] ends with. The originalvariables x[8] and y[16] are on the left hand side and the fresh variables on the right hand side. This provesto be a very useful concept.4.3.1 The Algorithm in an OverviewThe complete algorithm can be separated in seven subsequent phases, as sketched in Figure 4.4. Booleanoperations and arithmetic is introduced by means of OBDDs and the canonical form is de�ned accordingto De�nition 2.6. The details are explained in sections 2.3.2 and 2.3.3. The input to the algorithm is anbit-vector equation t !=u with �xed size, concatenation, �xed extraction, boolean operation and arithmeticallowed. The output is a solved form according to section 2.2.3. Since canonization is|strictly speaking|notpart of the solver, it is listed as Phase 0. Note that tautologies are detected right after canonization.4.3.2 Phase 1: SlicingThe two canonical terms t0 and u0 are either simple terms (i.e. constants, variables, extractions or bit-vectorOBDDs) or concatenations of simple terms. They are sliced to possibly smaller simple terms, where thewidth of all the chunks in t00 and u00 match by pairs:t0 .= t01[l1]
t02[l2]u0 .= u01[k1]
u02[k2]
u03[k3] slicing� t00 .= t1[m1] 
 t2[m2] 
 t3[m3] 
 t4[m4]u00 .= u1[m1] 
 u2[m2] 
 u3[m3] 
 u4[m4]Also, all constants c[n] have to be split up to concatenations of terms 0[m] and -1[m]. This is necessary inorder to apply transformation to OBDD leaf nodes whenever required. Since all width information is �xed,this step can be performed deterministically. The resulting set of possibly smaller equations is processed oneby one via the procedure chunk-solve.4.3.3 Phase 2: Chunk-SolveThe input to this sub-procedure is an equation ti[mi] !=ui[mi] on simple terms. Chunk-solve yields a set ofequations of the formhoriginal variablei = hterm over constants and fresh variablesi
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Figure 4.4: The Fixed Solver in an Overview



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 54Recursive Procedure OBDD-solveInput S: OBDDLet S = Ite (P ; BP ; BP ) InLet � be a fresh variableEQP := P = Ite (BP ; Ite (BP ; � ; true) ; false)Cstrnt := Ite (BP , true ,BP )/? BP _ BP ?/EQ-set := OBDD-solve(Cstrnt)Return freplace-original-vars-on-right-hand-side-via-EQ-set(EQP )g [ EQ-setFigure 4.5: The Recursive Sub-Procedure OBDD-solveBasically, there are four cases (a)-(d):(a) At least one term ti[mi] is a constantIf the second term ui[mi] is identic to ti[mi], the empty set is returned. If it is a di�erent constant, the solveraborts with false; otherwise, chunk-solve yields the set fui[mi] = ti[mi]g.(b) The set vars(ti[mi]) \ vars(ui[mi]) is emptyIf no OBDDs are involved, ti[mi] and ui[mi] are just two chunks that are meant to be equal. In the reducedchopper algorithm, this fact is represented by this very equation, but following the paradigm of left-handside and right-hand side, it is expressed by means of introducing a fresh variable a[mi] that is put on theright-hand-side at the appropriate position. E.G. chunk-solve(x[2] = y[4][0 : 1]) results in the set� x[2] = a[2];y[4] = a[2]
 b[2] � :Here, the fresh variable b[2] is just a place holder to pad parts of y[4] that are not e�ected by the equation.(c) Both terms are extractions on the same variable: x[n][j : i] !=x[n][l : k]Without loss of generality, let j � l. Then, three di�erent cases are possible:(1) j = l ^ k = l ) ;(2) i < l ) f x[n] = b[j-1]
a[i-j+1]
d[l-i-1]
a[i-j+1]
e[n-k-1] g(3) i � l ) f x[n] = b[j-1]
 ext(a[l-j]; k-j + 1)
d[n-k-1] gIn (2) and (3), the variables b; d and e are paddings that are omitted if their length evaluates to 0. In general,chunk-solve o�ers here a shortcut of the iterative application of the reduced chopper rules (1)-(1000). For adetailed explanation of this case split see [CMR96], where a predecessor of the �xed solver algorithm waspublished.(d) One term is an OBDDIn this case, the other term is lifted to an (possibly trivial) OBDD and the boolean connective equivalence\� " is applied. Instead of solving OBDD1 !=OBDD2, the equation �OBDD1�OBDD2� != true is pro-cessed. As stated in [CMR97], this can be performed via the procedure OBDD-solve presented in Figure 4.5.The procedure yields a set of equations, where original variables are on the left hand side and fresh variablesare nodes in an OBDD on the right hand side.To give an example, the equation x[4] _ y[4] != -1[4] is processed as follows:OBDD-solve(Ite (x[4] ; -1[4] ; Ite (y[4] ; -1[4] ; 0[4]))) = � x[4] = a[4];y[4] = Ite (a[4] ; Ite (b[4] ; -1[4] ; 0[4]) ; -1[4]) �



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 554.3.4 Phase 3: BlockingThe numerous equations returned by chunk-solve are collected according to the original variables. The setof bit-vector terms on the right hand side is referred to as a block. The equality of these terms is propagatedlater on, similar to the reduced chopper rule (7) in Figure 4.3.4.3.5 Phase 4: Coarsest SlicingOn each block a slicing according to its contents is performed. Thus, the block splits up into a set ofcolumns, each consisting of a set of simple terms that are required to be equal. In order to propagateequality, referential transparency is desired. This means, if information about a chunk a is processed, onlyplaces are a�ected where chunk a occurs. At the current state there might exist terms like a[4] and a[4][0 : 1].During this phase, all occurrences of a[4] are then replaced by the term a[4][0 : 1]
a[4][2 : 3]. Possibly, thisleads to further split-ups of the columns an so on. This iterative process terminates at latest, when eachcolumn is of width one. The �nally reached split-up of fresh variables into the coarsest possible chunksreached is referred to as the coarsest slicing.It is a justi�ed question why this step is applied here and not much earlier. For example, if it would havebeen applied during the slicing, all occurring chunks were already known. Roughly, this is the approachfollowed by Bj�rner and Pichora [BP98], where a normal form of an equation is computed a priori by meansof functions cut and dice, thus anticipating a kind of coarsest slicing.An argumentative consideration leads to the design decision drawn here. Due to the typical application informal veri�cation, most equations processed via decision procedures are either tautologies or unsatis�able.The strategy is to detect these cases as soon as possible.Tautologies are detected after canonization. But unsatis�ability could be detected at �rst after the chunk-solving. Consider for example the equation1[1] 
 0[1]
x[n]0[1] 
 x[n]
0[1] !=A coarsest slicing eventually splits up x[n] to chunks of width one. But it is obvious that this equationcannot be satis�ed because of the non-matchable leftmost constants. This is detected by chunk-solve, thusa split-up of x[n] can be avoided.4.3.6 Phase 5: PropagationIn this step the equality within each column is propagated. The applied method is to build up a union-�ndstructure (for example see [Sho78,GHR93]) in a way that there is a procedure pair union and �nd, where�nd( : ) : maps each occurring chunk to a unique representativeunion( : ; : ) : merges the representatives of both argumentsIn the beginning of the propagation, �nd maps each chunk to itself. When a union of two di�erent constantsis attempted, the algorithm aborts with a false like in the reduced chopper rule (2). If no OBDDs areinvolved in a union, the unique representative is set to the constant (if any) or one of the representativesof both arguments. If a chunk was updated to another representative, it has to vanish completely. It iscrucial that this replacement operation a�ects every occurrence, especially in OBDD nodes. If additionalinformation concerning a OBDD node applies, the structure of the OBDD changes. Consider for examplethe OBDD x[3] ^ y[3], where a union(x[3][2 : 2];1[1]) is called. The OBDD structure specializes as follows:
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Ite (x[3] ,0[3] , Ite (y[3] ,0[3] , -1[3])) Ite (x[3][1 : 2] ; Ite (y[3][1 : 2] ; -1[2] ; 0[2]) ; 0[2]) 
Ite (y[3][0 : 0] ; 1[1] ; 0[1])It is guaranteed by the coarsest slicing that the split-up as seen on the left side was already performed.Applying union on Bit-Vector OBDDsIf at least one argument of union is an OBDD, the operation is slightly more complex. Intuitively, it has tobe made explicit that the equation argument1 !=argument2 evaluates to true in any case. Both argumentscan contain arbitrary many chunks. This task can be performed as follows:� Build OBDD := (argument1 � argument2),� if OBDD = false, abort the algorithm and return false; else� Compute eq-set :=OBDD-solve(OBDD),� Replace any occurrence of a chunk on the left-hand side in eq-set by the corresponding right-hand side.4.3.7 Phase 6: RecombinationIf the algorithm did not abort with true or false previously, a conjunction of equations of the following formis generated: horiginal variablei = hterm over constants and fresh variablesiThe right hand side is constructed as a concatenation of the columns obtained in phase 4. Since the equalityin each column was propagated in phase 5, any element of the column is mapped via �nd to a uniquerepresentative that is either a constant, a fresh variable, an extraction on a fresh variable or an OBDD.If any extractions on fresh variables occur, they were generated in phase 4 during the computation of thecoarsest slicing. If a clean output with no redundant extractions is desired, all of them can be easily replacedby fresh variables of appropriate width. In any case, the set of equations put out is a solved form accordingto section 2.2.3.4.3.8 Run Time ExperimentsThe �xed solver described above was implemented in Allegro Common Lisp. A source code is included inAppendix C.2. This implementation has been applied to all the examples described in section 4.1.6. Therun-time measured on a Sparc Ultra 1 contains both canonization and solving. The canonization time ismarked by a \�" and the overall computation time by \
".To put it in a nutshell, the �xed solver shows a good performance with concatenations and extractionsand a moderately good behavior, if complex boolean operations or arithmetic is involved. It adapts betterthan the reduced chopper to cases where iterated slicing has to be applied, as demonstrated in example C3.If complicated OBDD information is processed, the algorithm soon reaches it's limits as seen in C5 andC6. This is explained by the expensive propagation of equality, if OBDDs are involved excessively. Thecomputation on width 8 was aborted after more than 20 hours. As described in the next section, theperformance in these cases can be improved notably by means of introducing heuristics.
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[n]A3: x[n2 ]
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x[n][0 : n-1]Table 4.6: Checking Tautologies via Fixed Solver
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0)n2Table 4.7: Checking Unsatis�ability via Fixed Solver
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[n]C3: 0[2]
x[n-2] !=x[n-2]
0[2] C6: x[n]+[n]y[n] !=x[n]XORy[n]Table 4.8: Satis�able Equations via Fixed Solver



CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 604.4 Introducing Heuristics for the Fixed SolverThe propagation of equality with OBDDs is an expensive task, for each merge operation might result ina large number of replacements. This is the case in the examples C5 and C6 (page 59). In this section,heuristics to optimize the propagation for the �xed solver are discussed. Sometimes it is advantageous toprocess informations contained in OBDDs earlier. Since valid equations are detected right after canonization,the advantages applies only to unsatis�able and non-valid formulae. The idea of the heuristic is explainedusing pigeon hole formulae.4.4.1 The Pigeon Hole PrincipleThis classic scenario explains as follows. Consider a number n of pigeon holes and n + 1 pigeons. Now, itis not feeding time and therefor every pigeon is supposed to be in a hole. Since there are not enough holesfor all the pigeons, at least one hole is occupied by more than one pigeon. This can be modeled in booleanlogic, e.g. via introducing (n + 1) � n propositional variables mij , i = 1; : : : ; n + 1, j = 1; : : : ; n, which areinterpreted asmij = true i� Pigeon #i is in Hole #j; i = 1; : : : ; n+ 1; j = 1; : : : ; nOn this basis, three boolean formulae are de�ned, each expressing one part of the scenario:�1 : Every pigeon is in at least one hole.�2 : In no hole there is more than one pigeon.�3 : No pigeon is in more than one hole.If the number of holes n = 2, these formulae present as�1 = (m11 _m12) ^ (m21 _m22) ^ (m31 _m32)�2 = (m11 ! :m21 ^ :m31) ^ (m21 ! :m11 ^ :m31) ^ (m31 ! :m11 ^ :m21)^(m12 ! :m22 ^ :m32) ^ (m22 ! :m12 ^ :m32) ^ (m32 ! :m12 ^ :m22)�3 = :(m11 ^m12) ^ :(m21 ^m22) ^ :(m31 ^m32)It is obvious that the formula �1^�2^�3 cannot be satis�ed. Moreover, formula �3 can be neglected, sinceeven if a pigeon manages to be in more than one hole at once, �1 ^ �2 is necessarily false.In spite of the clear intuition, this example is a challenge for mechanical proof systems. In 1985 Hakenshowed, that there is an exponential lower bound in n for the number of steps any proof of unsatis�abilityneeds, when using resolution as decision procedure (cf. [Hak85]).4.4.2 Expressing Pigeon Hole in the Bit-Vector TheoryFor each boolean variable mij , a corresponding bit-vector mij [1] is introduced. Then the formulae �1; �2and �3 can be built as OBDDs by means of applying the boolean connectives on bit-vector terms of widthone. In the following, �1; �2 and �3 are assumed to be bit-vector OBDDs. Now there are several slightlydi�erent ways to express the pigeon hole principle:(I) �1
�2
�3 != 1[1]
1[1]
1[1](II) �1
�2 != 1[1]
1[1](III) �1 ^ �2 ^ �3 != 1[1](IV ) �2 ^ �2 != 1[1]In any case, the solver is expected to return false. The run-time of the �xed solver to show unsatis�abilitydepends heavily on the kind of formalization, as shown in Table 4.9. The y-axis is scaled in a logarithmicmanner, the bottom line \0" is to read as \below one second".
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[#Holes](III) �1 ^�2 ^�3 !=1[1] (IV) �1 ^�2 !=1[1]Table 4.9: The Pigeon Hole Principle via the Fixed Solver [without Heuristic]The performance of the �xed solver gets better from (I) to (IV) with a noticeable gap between (I)/(II) and(III)/(IV). This is due to the fact that since the formulae �1 and �2 are both satis�able, in (I) and (II) theunsatis�ability of the overall equation is detected no sooner than in phase 5. In examples (III) and (IV),the OBDD alone canonizes to false, thus the algorithm aborts already after the chunk-solving in phase 2.The information required to show unsatis�ability is the same in all cases. It is desirable to bring it in anadvantageous form.4.4.3 The Idea: OBDD MeltingWhile processing example (I), at the beginning of phase 2 there are three calls to chunk-solve: �1 !=1[1],�2 !=1[1] and �3 !=1[1]. Each call yields a set of equations for all occurring original variables mij [1], wherethe right hand sides are OBDDs over fresh variables. This is not e�cient, for the equality of three terms onthe right hand side for each mij [1] has to be propagated. It seems to be more reasonable �rst to melt the
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[#Holes](III) �1 ^�2 ^�3 !=1[1] (IV) �1 ^�2 !=1[1]Table 4.10: The Pigeon Hole Principle via the Fixed Solver [with Heuristic 1]OBDDs by means of processing a conjunction instead of separate formulae:�1 !=1[1]; �2 !=1[1]; �3 !=1[1] melt�! �(�1�1[1])^ (�2�1[1])^ (�3�1[1])� !=1[1]Now chunk-solve is called only once and returns false. For satis�able equations, there would be but oneright hand side for each variable instead of three. This leads toHeuristic 1: Before phase 2, melt any OBDD equations that have at least one node mark in common.In case of (I) and (II), all three respectively two OBDDs are melted. This leads to a far better performanceas displayed in Table 4.10.
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[n]B6: x[n] ^ (0
x[n][0 : n-2]) !=(1
0)n2[Heuristic 1] B6: x[n] ^ (0
x[n][0 : n-2]) !=(1
0)n2[Heuristic 2]Table 4.11: Example B6, Processed With Two Di�erent Heuristics4.4.4 Re�nement of the HeuristicIt is a mistake to assume that Heuristic1 is favorable in any case. Consider the previously processed exampleB6: x[n] ^ (0[1]
x[n][0 : n-2]) !=(1[1]
0[1])n2 (cf. Table 4.7). This equation is unsatis�able due to the leastsigni�cant position. The call to chunk-solve with x[n][0 : 0]^0[1] !=1[1] results in false. If Heuristic 1 isapplied, all n OBDD nodes are melted, before this false is detected. As seen in Table 4.11, this yieldsa noticeable slowdown (the �xed solver without heuristics computed the longest example within 0.25 seconds).This example suggests to restrict the melting of OBDDs to cases where the occurrence of node variablesoverlaps to a stronger degree:Heuristic 2: Before phase 2, melt any OBDD equations that have all node marks in common.In example B6 this leads to a better performance, as observed in Table 4.11. It is slower than the computationwithout heuristics, because any two of the n OBDD equations have to be checked regarding to the meltingcondition of Heuristic 2.Neither of the two extreme heuristics show an overall good performance. In particular, the examples C5and C6 are not processed more e�ciently. And, in both cases, there are examples where the �xed solverperforms noticeable worse than without melting at all. It is reasonable to expect a good heuristic formelting somewhere in the middle. The best one I found is the following:Heuristic 3: Before phase 2, melt any two OBDD equations OBDD1 and OBDD2, ifjvars(OBDD1)j+ jvars(OBDD2)j � 2:4 � jvars(OBDD1) \ vars(OBDD2)jIn Heuristic 2, the factor would be 2 instead of 2.4 and in Heuristic 1 it would be 1, where 1 � 0 := 0. Itwas narrowed down while using factors 4, 2.5, 2.4, 2.3 and 2.2.With high probability, for any factor there exist examples where the behavior is sub-optimal. However,2.4 resulted for the examples C5 and C6 in a not overwhelming but noticeable speed-up, as displayed inTable 4.12. At the highest width processed, Heuristic 3 melted 32 equations to 3 OBDDs in example C5(respectively 64 equations to 4 OBDDs in example C6).
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[n]C5: x[n]+[n]y[n] !=0[n] C6: x[n]+[n]y[n] !=x[n]XORy[n]Table 4.12: Satis�able but not Valid Examples [with Heuristic 3]A Short Summary on HeuristicsThe usage of heuristics together with the �xed solver seems to be crucial in order to avoid a break-down inmany pathological cases. Although it is not likely that an overall optimal heuristic for melting exists, theprocessed examples suggest to apply rather a mediocre one than none at all. The price might be a slow-downin some simple examples, but this is not a high price if the alternative is a gambling whether the system willever respond again.There might be other places where it is reasonable to apply heuristics. The order of chunk-solving andpropagation are promising points, for both o�er the chance to detect unsatis�ability early. However, theseconsiderations were not followed in this thesis.4.5 Looking Back at Fixed SizeThough any of the followed approaches has its justi�cation, there was always a pathologic example exceedinga reasonable respond time. Though most of these unwanted behaviors could be patched somehow, theredoes not seem to be a conceptually clean way to gain satisfying e�ciency. Having spent quite some time inconsideration of alternatives in the past two year, the author feels inclined to summarize this in the followingestimation:It is not likely, that there is a simple concept that provides an e�cient solver for the theory ofbit-vectors, even for �xed size. In order to match the needs of industrially sized applications,sophisticated strategies and detection of special cases are required.



Chapter 5Beyond Fixed SizeThe only way to discover the limits of the possible is to gobeyond them into the impossible.(Arthur C. Clarke, Technology and the Future)5.1 A Solver for Variable Width: Split-ChopThis section de�nes an extension of the reduced chopper algorithm from section 4.2.2 for solving bit-vectorequations of variable width. In order to cope with the non-convex properties, a concept of context splits inconnection with reasoning about integer terms is de�ned.5.1.1 Reasoning about IntegersThe De�nition 2.13 of the frame solver implies that reasoning on integer constraints is required. The followingexample shows that it is not su�cient to express equalities (like width(t) = width(u)) and inequalities (likeinteger 1 � l).Example 5.1 x[l] 
 1[1]
0[1]1[1]
0[1] 
 x[l] !=Here, l is an integer variable. It is easy to see that this equation is satis�able, if and only if l is even. Thiscan be expressed by the constraint 12 � l 2 Z.De�nition 5.1 [Closed Sets of Integer Constraints]Let L := fl1; : : : ; lkg denote the set of integer variables. The set of integer numbers is denoted by Z. Aninteger term � is a term that can be constructed from L, rational numbers, addition, multiplication by arational number, operations DIV, MOD and the application of the operations max and min on an arbitrarynumber of integer terms. Also, there exist symbols -1 and1 which are de�ned as -1 :=max ;,1 :=min ;.A set 	 of integer constraints is a quadruple (Leq;Bet;Map; Int), where� Leq is a set of inequalities on integer terms,� Bet is a collection of inequalities of the form ��i � li � �+i ,� Map is a set of tuples (li 7! �i); none of the li in Map occurs in Leq or Int,� Int is a collection of integer terms; it is understood that each term is required to evaluate to an integer.65



CHAPTER 5. BEYOND FIXED SIZE 66	 is called closed, if� No redundant information is contained in Leq, Bet or Int; e.g. the inequality 1 � l is subsumed bythe inequality 2 � l and therefore 1 � l should be omitted,� For every variable li 2 L, there exists exactly one inequality ��i � li � �+i 2 Bet,� 	 is satis�able, i.e. there exists an interpretation I : L! Z such that I j= 8 (li 7! �i) 2Map : li = �iand I j= Leq ^Bet ^ V�2Int� 2 Z. yThe shape of 	 is motivated by a recursive function int-close computing an equivalent but closed set for agiven 	. The idea is similar to the Fourier-Motzkin elimination method (cf. [Sch86,TH]).int-close(Leq�; Int)If vars(Leq�) = ;Then If Leq� j= ? Then Return falseElse Return (;; ;; ;; ;)EndifElse Let l 2 vars(Leq�)In Neg := f� j there is an ineq 2 Leq� with ineq , � � lgPos := f� j there is an ineq 2 Leq� with ineq , l � �g(Leq;Bet;Map; Int) := int-close� (Leq� n fineq j l 2 ineqg)[fneg � pos j neg 2 Neg; pos 2 Posg ; Int�Int Int [ flgBet Bet [ fmax(Neg) � l � min(Pos)gWhile 9� 2 Bet : (Leq ^ � ^ V�2Int� 2 Z) ) l = �l DoReplace l in Leq; Int by �lMap Map [ f(l 7! �lgOdIf Leq ^Bet ^ V�2Int� 2 Z j= ? Then Return falseElse Return (Leq,Bet,Map,Int)EndifEndif5.1.2 Splitting Context: The Solver Split-ChopThe solver for variable width presented now|in the following referred to as split-chop or short S<|isdescribed via a straight-forward generalization of an equational transformation system (cf. De�nition 4.4).With each application of an equational transformation rule, not only the set of bit-vector equations � butalso the integer constraints 	 are modi�ed. A pair (�;	) that is not terminal (with respect to S<) is referredto as a context. If one of the rules (1); (1)� matches an equation in �, the respective context is split toseveral cases. Each case yields a new context that is processed by the split-chop algorithm.A split-chop computation starting with t1 = t2 is sketched as follows.



CHAPTER 5. BEYOND FIXED SIZE 67Casesn < m � 8<: p[n] = �(q[m][0 : n� 1])�(q[m][n : m� 1])
u= tq[m] = q[m][0 : n� 1]
q[m][n : m� 1] 9=;(1) p[n]
t= q[m]
u; n=m � � p[n] = q[m]t= u �n > m � 8<: q[m] = �(p[n][0 : m� 1])�(p[n][m : n� 1])
t= up[n] = p[n][0 : m� 1]
p[n][m : n� 1] 9=;Endcases(1)� x[n][i : j] = x[n][k : l]; j-i= l-k;i < k � 2666666664
 nx[n][i : l] = a[k-i] l-i+1k-i o ;1k-i � (l � i+ 1) 2 Int !0B@(x[n][i : l] = a[(l-i+1)MOD(k-i)]
(b[(i-l-1)MOD(k-i)]
a[(l-i+1)MOD(k-i)])(l-i+1)DIV(k-i)) ;�(l � i+ 1)MOD (k � i)� > 0 1CA

3777777775(2) c[n] = c0[n] ; c 6= c0 � FAIL(3) t= t � fg(4) � p= tq = u � ; q � t � � p= t[q=u]q = u �(5) � p= qq = r � � 8<: p= aq = ar = a 9=;(6) � p= qq = p � � � p= aq = a �(7) � p= tp= u � � � p= tu= t �(8) c= t; t 6= const � f t = c gFigure 5.1: The Equational Transformation System S< for Variable Width1. De�ne a set � := ft1 = t2g [ init-CS(t1 = t2) according to De�nition 4.5.2. Compute a set 	 of integer constraints based on the term structure of t1 = t2.3. Compute the closure of 	 via int-close; if it fails, abort this context with false.4. Start the equational transformation system S< in Figure 5.1 on the context (�;	).5. If no rule is applicable, the computation in this branch terminates with the frame (�;	) { see De�ni-tion 2.13.6. If rule (1) or rule (1)� encounters ambiguities due to the variable term width, perform a case split andgenerate pairs (�1;	1); : : : ; (�k;	k).7. With each of the pairs (�{ ;	{), { = 1; : : : ; k, continue the computation at point 3.



CHAPTER 5. BEYOND FIXED SIZE 68Example 5.2 [cf. Example 2.6]Consider the equation x[n]
0[1]
y[m] != z[2]
1[1]
w[2]where n and m are integer variables. Set 	 := (fn + 1 +m � 5; 5 � n + 1 +mg; ;; ;; ;). The procedureint-close results in 	 = (;; f1 � n � 3g; f(m 7! 4�n)g; fn; 4�ng). Next, the equational transformation rule(1) tries to match the leftmost chunks x[n] and z[2]. This leads to the case-split(a) n < 2 int-close n 7! 1;m 7! 3(b) n = 2 int-close n 7! 2;m 7! 2 S< false(c) n > 2 int-close n 7! 3;m 7! 1The split-chop algorithm (cf. Table 5.1) in combination with int-close terminates with the two frames0BB@8>><>>: x[n] = a[1];y[m] = 1[1]
b[2];z[2] = a[1]
0[1];w[2] = b[2] 9>>=>>; ;�;;� 1 � n � 4;1 � m � 4 � ;� n 7! 1;m 7! 3 � ;� 1;3 ��1CCA ;0BB@8>><>>: x[n] = a[2]
1[1];y[m] = b[1];z[2] = a[2];w[2] = 0[1]
b[1] 9>>=>>; ;�;;� 1 � n � 4;1 � m � 4 � ;� n 7! 3;m 7! 1 � ;� 3;1 ��1CCAThus, all possible solutions are covered.5.1.3 The Context Split RuleIn order to explain the context split applied in rule (1)�, Example 5.1 is processed via the split-chop algorithm.The application of the equational transformation rules in Figure 5.1 works as follows:� Start with context (�;	) := �fx[l]
1[1]
0[1] = 1[1]
0[1]
x[l]g; (f1 � lg; ;; ;; ;)�.� int-close yields 	 (;; f1 � l <1g; ;; flg)� Rule (1) matches with leftmost chunks x[l] and 1[1]. Since l is variable, the context (�;	) is split tointeger constraints 	1 := 	 [ fl < 1g, 	2 := 	 [ fl = 1g and 	3 := 	 [ fl > 1g.� Context (�;	1) yields false immediately, since 1 � l is violated. The context (�;	2) yields falseafter a few rule applications, for x[1]
 1[1]
0[1] != 1[1]
0[1]
x[1] triggers rule (2).� In context (�;	3), the equations fx[l][0 : 0] = 1[1]; x[l][1 : l � 1]
1[1]
0[1] = 0[1]
x[l]g are added to�. In an attempt to match the second equation with rule (1), 	31, 	32 and 	33 are generated withadditional constraints l < 2, l = 2 and l > 2 respectively.� 	31 yields false, 	32 terminates with the frame �fx[2] = 1[1]
0[1]g; (;; f2 � l � 2g; fl 7! 2g; f2g)�.� In context (�3;	33), the rule (1)� matches equation x[l][2 : l � 1] = x[l][0 : l � 3]. There is a case split,according to whether l MOD 2 = 0. Contexts (�33;	331) and (�33;	332) are generated, where theterms 12 � l respectively lMOD 2 = 1 are added to 	331 respectively 	332.



CHAPTER 5. BEYOND FIXED SIZE 69� To �331, the equation x[l] = (a[2]) l2 is added, thus terminating in a frame �x[l] = (1[1]
0[1]) l2 ; (;; f3 �l <1g; ;; f 12 � lg)�.� To �332, the equation x[l] = b[1]
(d[1]
b[1]) l�12 is added. Together with x[l][0 : 0] = 1[1] andx[l][l � 1 : l � 1] = 0[1], this context yields a false.Thus the split-chop algorithm terminates with the set of non-false framesn�fx[2] = 1[1]
0[1]g; (;; f2 � l � 2g; fl 7! 2g; f2g)�; �x[l] = (1[1]
0[1]) l2 ; (;; f3 � l <1g; ;; f 12 � lg)�oA short inspection con�rms that all possible solutions are represented.5.1.4 ExperimentsThe split-chop algorithm has been implemented in Allegro Common Lisp. However, by the end ofthis diploma thesis it did not reach a state of high trustworthiness. At the world wide web sitehttp://www.informatik.uni-ulm.de/ki/Bitvector/ a prototype version can be obtained.5.2 SemaphoreThe last approach explained an intuitive way towards solving large sub-sections of the bit-vector theory withvariable width. Since the split-chop algorithm does not allow boolean operations or bit-vector arithmetic,the usability in practical applications is limited. Moreover, an extension of split-chop to boolean operationsis necessarily incomplete (cf. Non-Existence Theorem 3.7).It is to be mentioned that in the same time but independently, Bj�rner and Pichora [BP98] presentedan algorithm that allows to solve several special cases of bit-vector equations with variable width. Moreprecisely, a parametrized term like x[aN+b] can be processed symbolically. Though a close comparison withthe approach presented here is still outstanding, the split-chop algorithm allows a greater degree of freedom.For example, variable extractions can be processed by means of a simple case-split on the term structure inthe beginning.Thus, the concept presented here is prototypic. General methods for processing boolean operations andarithmetic for variable width are still left to be desired. In the present form it is to expect that for manypathologic examples the split-chop algorithm runs|regrettably like the author of this diploma thesis|outof time.



Chapter 6Conclusion All human progress involves, as it �rst condition,the willingness of the pioneer to make a fool of himself.(Bernard Shaw)This diploma thesis contains a number of insights on solving bit-vector equations both from a theoreticaland practical point of view. That might be grouped as follows.Understanding the Complexity of Bit-VectorsThough the \NP -completeness" of some equational bit-vector languages is not surprising, the correlation inthe extension of theories as displayed in Figure 2.3 is better understood now. Moreover, the Quanti�cationLemma 2.9 explains that solving is far more a task than this chart might suggest. In most non-trivialextensions, a call to a solver can be used to decide PSPACE-hard problems (cf. section 2.5.3).As expected, su�cient enrichment of the bit-vector theory leads to unsolvable problems. With the Non-Existence Theorem 3.7, at �rst a proof succeeded. Though bit-vectors are a simple data structure, theyshould have lost their image as \trivial" by now.Exploration of Solving ApproachesWe have presented three approaches for solving �xed-sized bit-vector terms in chapter 4. Their actualimplementation on the one hand con�rms the idea an on the other hand reveals weak performance in severalpathologic cases. The �xed solver together with heuristics patches most of these, thus elaborating theextensive usage of OBDDs. A concept for solving non-�xed size bit-vector equations was given via thesplit-chop algorithm in section 5.1.The vexing point is that in any approach simple examples were found that lead to horrendous responsetime. This suggests that solving bit-vector theories with a rich set of operators can not be performed by asimple concept, but rather by means of a sophisticated strategy and heuristics. If these observations are notfundamentally misleading, this is bad news. First, because the development of an e�cient solver requires alot of tedious work and second, since the trustworthiness of a complicated solving algorithm tends to be low.In the context of hardware veri�cation, a doubtful mechanization is less than desirable.Further WorkDue to the huge variety and surprising depth, not all of the topics centering around the problem of solvingbit-vector equations could be discussed exhaustively. In particular, the following tasks seem to o�er promisingaspects for further investigation. 70



CHAPTER 6. CONCLUSION 71First, research the inherent complexity of solving more throughoutly. The characterization via the com-plexity class of the language of satis�able equations seems to be misleading, for the severity of solving isnot captured accurately. Thus a more expressive notion of complexity is desired. Moreover, the detection ofdecidable fragments is far from being complete. It is conjectured that the theory of bit-vectors with variablewidth and variable extractions is decidable via a combination of Makanin's algorithms and an exhaustivebut �nite case-split on the term structure.Second, develop an e�cient \master solving algorithm" for �xed size. This could follow the ideas ofthe �xed solver algorithm, but moreover use WS1S encoding or other whenever it is considered to beadvantageous. Without doubt, a lot of experiments are needed to draw reasonable decisions here. Inaddition, it is crucial to be speci�c in the conceptual details in order to enhance trustworthiness.Third, the split-chop algorithm from chapter 5 should be implemented into a non-convex framework(STeP [BBC+] might be an interesting choice). Use reasoning about integers contained there instead ofimplementing a separated method for computing the closure on integer constraints. Then, add booleanoperations and arithmetic.The author is not optimistic, that these topics will be covered in short a time, let alone by his further work.After roughly two years of thinking about bit-vectors, he needs a break.



Appendix AFormer Results at the SRIThe results displayed here originate from the author's work at the SRI in autumn 1996. They were yetunpublished and appear here in the \original" form, excuse the typos. Only the notation was updated toavoid confusion.A.1 An NP -complete ProblemThe Problem BVEVE-SolvabilityConsider the theory of bitvectors with �xed (�nite nonzero) size and the operations .
. (composition) and.[j : i] (extraction). i and j are allowed to be cardinal variables. Also, there exist constants of arbitrary but�xed length n, further denoted as 0[n] and -1[n].Let t1 and t2 be terms over such bitvectors. The problem to decide whether the there exists a sollution to theequation t1 = t2 is called BVEVE-Solvability (BitVector Equation with Variables in Extraction Solvability).Claim BVEVE-Solvability is NP-complete.Proof:a) BVEVE-Solvability 2NPOne can guess a polynomial-sized sollution (t.i. polynomial in the term-length and the maximum length ofthe used bitvector variables) and check if the equation holds.b) BVVE-SAT is NP-hard (Reduction 3-CNF-SAT�m BVEVE-Solvability)Let F = (L11 _ L12 _ L13) ^ ::: ^ (Lm1 _ Lm2 _ Lm3) be a boolean formula in 3-CNF over variablesxi 2 V ar = fx1; :::; xng. Lij are literals in V ar [ V ar; (i 2 f1; :::;mg; j 2 f1; 2; 3g).For each xi 2 V ar introduce a bitvector variable ai of length 3 and integer-variables ri; si. Additionally, weneed m bitvector variables bj of length 3 and and integer variables tj for padding.Let 'i := (ai[ri : 2])
(ai[0 : si])g(xi) := ai[0 : si] 	8i 2 f1; :::; ngg(xi) := ai[ri : 2]Gj := g(Lj1)
g(Lj2)
g(Lj3)
(bj [0 : tj ]) 8j 2 f1; :::;mg72



APPENDIX A. FORMER RESULTS AT THE SRI 73Now de�ne the reduction f as follows:f(F ) := ( a1
:::
an 
 b1
:::
bm 
 '1
:::
'n 
 1[1]
G1
1[1]
:::
1[1]
Gm0[3]
:::
0[3] 
 0[3]
:::
0[3] 
 0[3]
:::
0[3] 
 1[1]
0[7]
1[1]
:::
1[1]
0[7] !=The equation f(F ) is solvable, if (and only if) all variables ai and bi equal 0-valued bitvectors; that meansalso, that each 'i has to be of the length 3 to match the 1[1]1[1] -position. This can only be achieved ifri = si + 1 for each i, thus ri 2 f1; 2g. Consider xi = true equivalent to ri = 1 (and xi = false equivalentto ri = 2). In order to match the lower term, each Gj has to be of the length 7. The length of bj [ 0 : tj ] isin f1; 2; 3g, thus at least one of the g(Lij) in each clause has to be of the length two. This is equivalent tothe notion that one of the literals Lij evalueates to true.Thus,F is satis�able , there exists a mapping � : V ar ! ftrue; falseg with �(F ) = true , there exists amapping � : fri; si; tj ji = 1; ::; n; j = 1; ::;mg ! N such that f(F ) is solvable. Q:E :D



APPENDIX A. FORMER RESULTS AT THE SRI 74A.2 An NP -hard ProblemThe Problem BV
;bvecn-SolvabilityConsider the theory of bitvectors with variable size and the operation .
. (composition). A bitvectorvariable is denoted to be of the type bvecn, where n is either a nonzero cardinal or a variable. The theorycontains constants of arbitrary but �xed length m, further denoted as 0[m] and -1[m].Let t1 and t2 be terms in this theory. The problem to decide whether the there exists a sollution of theequation t1 = t2 is called BV
;bvecn-Solvability.Claim BV
;bvecn-Solvability is NP-hard.Proof: (Reduction 3-CNF-SAT�m BV
;bvecn-Solvability)Let F = (L11 _ L12 _ L13) ^ ::: ^ (Lm1 _ Lm2 _ Lm3) be a boolean formula in 3-CNF over variablesxi 2 V ar = fx1; :::; xng. Lij are literals in V ar [ V ar; i 2 f1; :::;mg; j 2 f1; 2; 3g.For each xi 2 V ar introduce two bitvector variables a(i) : bvec[pi] and b(i) : bvec[qi] of unknown size. Alsowe need m pairs of variables c(j) : bvec[rj ], d(j) : bvec[sj ] for padding.Let 'i := 1[1]
a(i)
b(i) 8i 2 f1; :::; ng j := 1[1]
c(j)
d(j) 8j 2 f1; :::;mgg(xi)g(xi) :=:= a(i)b(i) � 8i 2 f1; :::; ngGj := g(Lj1)
g(Lj2)
g(Lj3)
c(j) 8j 2 f1; :::;mg	 := a(p1)
::
a(pn)
b(q1)
::
b(qn)
c(r1)
::
c(rm)
d(s1)
::
d(sm)Now de�ne the reduction f as follows:f(F ) := � 0[1]
	 
 '1
:::
'n 
  1
:::
 m 
1[1]
 G1
1[1]
:::
Gm	
0[1] 
 1[1]
0[3]:::1[1]
0[3] 
 1[1]
0[4]:::1[1]
0[4] 
1[1]
 0[7]
1[1]
:::
0[7] !=This equation is solvable, if (and only if) 	 equals a composition of 0-valued bitvectors, because the 0[1] ispropagated to every cell of 	.Therefore each sum pi + qi must equal 3 and each sum rj + sj must equal 4. One bitvector of the paira(i); b(i) has the length 2, the other one is of the length 1. Consider xi = true equivalent to jja(i)jj = 2(and xi = false equivalent to jja(i)jj = 1). For there are no zero length bitvectors allowed, each jjc(j)jj canbe chosen between 1 and 3. Every Gj has to reach the length 7, this is equivalent to the notion that in eachdisjunction of the 3-CNF-formula F at least one literal evaluates to true.Thus,F is satis�able , there exists a mapping � : V ar ! ftrue; falseg with �(F ) = true , there exists amapping � : fpi; qi; rj ; sj ji = 1; ::; n; j = 1; ::;mg ! N such that f(F ) is solvable. Q:E :DRemark:The question if BV
;bvecn-Solvability ?2 NP is still open. There seems to be no hint that for every solvableequation exists a polynomial sized (in the input, that is) sollution.



APPENDIX A. FORMER RESULTS AT THE SRI 75A.3 An Unsolvable ProblemThe Problem 9BV[n]-SolvabilityConsider the theory of bitvectors with nonzero size and the operations .
. (composition) and .[j:i](extraction). i and j are allowed to be cardinal variables. Also, there exist constants of arbitrary but �xedlength c, further denoted as 0[c] and 1[c].Additional, there exists one special cardinal variable n, on which the terms can be dependent on, t.i. thecardinal variables can be indexed from 1 through to n and we allow an operation nNi=1, which is a compositionof n arguments. (Note that in the following mNi=1 is not really a new operation, for m will be a �xed number.)Let tn and un be bitvector-terms dependent on n. The problem to decide whether there exists a sollutionto the equation 9n : tn = un is called 9BV[n]-Solvability.Claim 9BV[n]-Solvability is undecidable.Proof: (Reduction Post's correspondence problem� 9BV[n]-Solvability)Let P = f(a1; b1); :::; (am; bm)g; m � 1 be an instance of Post's correspondence problem, ai; bi 2 �+.Basically, we will construct two nNi=1-compositions which match if (and only if) there is a correspondingsequence i1; :::; in that solves the correspondence problem (t.i. ai1ai2 � � �ain = bi1bi2 � � � bin).Let ��! �0 = f0; 1g� be a mapping from the basic alphabet into an arti�cal one, where� := max(3; dlog2 k�ke). �� : �� ! �0 � is de�ned according to this. Let ! := maxfj��(ai)j : i =1; ::;mg [ fj��(bi)j : i = 1; ::;mg.Let � := dlog2me, the binary length needed to store the information, which pair (ai; bi) is chosen. Thuslet � : f1; ::: ;mg ! f0[1]; 1[1]g� be the binary encoding of these numbers, represented in compositions ofbitvector constants.We introduce the following abbreviations:A0 := mNi=1� 1[1]
0[j��(ai)j�2]
1[1] 
 1[�]�ACHOOSE := mNi=1� ��(ai) 
 �(i)�B0 := mNi=1� 1[1]
0[j��(bi)j�2]
1[1] 
 1[�]�BCHOOSE := mNi=1� ��(bi) 
 �(i)�
 := mNi=1 0[max(j��(ai)j;j��(bi)j)+�]We also need some (indexed) integer variables to express which pair is chosen. li and ri will be the markerfor the �rst argument (a), l0i and r0i accordingly to the second one. Also, we introduce some 'pu�ers', namelyci; di; ei and c0i; d0i; e0i to avoid arithmetic operations. It will yield that for every i 2 f1; ::; ng :ci = li � ri di = ri � 1 ei = ri � �c0i = l0i � r0i d0i = r0i � 1 e0i = r0i � � � (�)To make sure, that li; ri always extract a valid pair-component out of ACHOOSE(respectively l0i; r0i from BCHOOSE),we de�ne:



APPENDIX A. FORMER RESULTS AT THE SRI 76�n := nNi=1 A0[ri : li] �0n := nNi=1 B0[r0i : l0i]	n := nNi=1 �1[1]
0[!][0 : ci]
1[1]� 	0n := nNi=1 �1[1]
0[!][2 : c0i]
1[1]�To enforce the 'right order' of the segments, we will match�An := nNi=1ACHOOSE[ei : di] and �Bn := nNi=1BCHOOSE[e0i : d0i]To make shure that (�) yields, we introduce�n := nNi=1�
[ri : li] 
1[1]
 
(ri; di) 
1[1]
 
[ei : di] 
1[1]��n := nNi=1�
[0 : ci] 
1[1]
 0[2] 
1[1]
 0[�] 
1[1]��0n := nNi=1�
[r0i : l0i] 
1[1]
 
(r0i; d0i) 
1[1]
 
[e0i : d0i] 
1[1]��0n := nNi=1�
[0 : c0i] 
1[1]
 0[2] 
1[1]
 0[�] 
1[1]�Now de�ne the reduction f as follows:f(P ) := 8>><>>: �n 
 �0n 
 �n 
 �0n 
 �An 
 nNi=1ACHOOSE[ri : li]�n 
 �0n 
 	n 
 	0n 
 �Bn 
 nNi=1BCHOOSE[r0i : l0i] !=It is obvious, that P has a sollution, if (and only if) f(P ) is solvable. Q:E :D



Appendix BComplexity TheoryB.1 3CNF-TQBF is PSPACE-completeThis fact is probably not new and even less surprising.Nevertheless a proof is included here, for the common literature does not seem to refer to this detail. Theidea of this proof was taken from the lecture \Algorithmen und Kalk�ule", taught by Prof. Dr. Uwe Sch�oningin the Summer Term 1996 at the University of Ulm and originally showed that 3CNF -SAT is NP -complete.Let � :=Q1x1: � � �Qnxn:(l11 _ l12 _ l13) ^ : : : ^ (lm1 _ lm2 _ lm3) be a fully quanti�ed boolean formula in3-conjunctive-normal-form (3CNF ), lij 2 V [ V , V := fx1; : : : ; xng, Qk 2 f8; 9g, i = 1; :::;m, j = 1; 2; 3,k = 1; : : : ; n. Then the language 3CNF -TQBF is de�ned as3CNF -TQBF := f�j j= �g:Claim: 3CNF -TQBF is PSPACE-complete.Proof: (Reduction TQBF �m 3CNF -TQBF )Let � :=Q1x1: � � �Qnxn:F be a fully quanti�ed boolean formula with arbitrary matrix F over variablesV := fx1; : : : ; xng and connectives ^; _ and :. F can be transformed in polynomial time into an equivalentformula F̂ in Negation Normal Form (NNF) where negations only occur directly at variables via:(� ^ �) ! :� _ :�:(� _ �) ! :� ^ :�::� ! �A transformation of F̂ into a formula ~F in 3CNF is de�ned as follows:Let TF̂ be the tree representation of F̂ where each node is marked with a ^ or an _ and each leaf is inV [ V . Let �TOP 2 f^;_g be the root node mark. For each non-leaf introduce a fresh boolean variable yi,i = 1; : : : ; k. TF̂ is transformed into ~F := y1 ^ [y1 , (y2 �TOP y3)]^ [y2 , (y4 � y5)]...̂ [yk , lk1 � lk2] (?)
77



APPENDIX B. COMPLEXITY THEORY 78The arguments of � 2 f^;_g are the left and right subtree of the corresponding node. The transformationterminates at leaf level, lk1; lk2 2 V [ V .Each of the expressions [::] is equivalent to three CNF clauses:[yi , (� � �)] � (yi ) � � �) ^ (� � � ) yi)� (yi _ (� � �)) ^ (:(� � �) _ yi)� ((yi _ �) � (yi _ �)) ^ ((yi _ �)��(yi _ �))� If � = ^ Then (yi _ �) ^ (yi _ �) ^ (yi _ � _ �)Else (yi _ � _ �) ^ (yi _ �) ^ (yi _ �)EndifLet � : V ! ftrue; falseg and  : fyi; : : : ykg ! ftrue; falseg be assignments of variables. Then� j= F̂ i� �;  j= ~F^  assigns each value of yi according to �In particular, for each � with � j= F̂ there exists a mapping  resulting in a model of ~F , namely the oneassigning yi 7! eval(Nodei). Vice versa, for a �0 6j= F̂ there is no  with �0;  j= ~F , for (?) cannot besatis�ed. This leads to the statementQ1x1: � � �Qnxn:F � Q1x1: � � �Qnxn:9y1: � � � 9yk: ~FThus, each quanti�ed boolean formula can be transformed in polynomial time into an equivalent quanti�edboolean formula in 3CNF . This yields the reduction. �



APPENDIX B. COMPLEXITY THEORY 79B.2 BV
;[i:j]-Solvability is NP -completeThis fact was also recorded in autum 1996 at the SRI. The original (and less elegant) version of the proofis displayed in Appendix A.1.Let BV
;[i:j] be the theory of �xed-sized bit-vectors with composition and variable extraction. Assumethe equation t= u in this theory contains the variables Vt=u := vars(t) [ vars(u) = fv1; : : : ; vkg. De�neLt=u-SAT as Lt=u-SAT := ft= ujThere exists an assignment � of Vt=u with � j= t= ugClaim: Lt=u-SAT is NP -complete.Proof: (Reduction from 3CNF -SAT )(1.) Lt=u-SAT 2 NPGiven an equation t= u. Then nondeterministically guess aa assignment � : v1 7! a1 ^ � � � ^ vk 7! ak of allvariables vi 2 Vt=u, i = 1; : : : ; k. Since there are upper bounds for each integer variable, j�j is polynomialin jt= uj (assume the length information is given unary). It is also a polynomial task to check whether� j= t= u.(2.) Lt=u-SAT is NP -hard.Let � := (l11_l12_13)^� � �^(lm1_lm2_lm3) be a boolean formula in 3CNF over variables V = fx1; : : : ; xng,ljp 2 V [ V , j = 1; : : : ;m, p = 1; 2; 3.For each xi introduce an integer variable mi (i= 1; : : : ; n) and for each clause an integer variable cj ,(j = 1; : : : ;m). mi is designed to be 0 if xi is assigned to false and 1 if xi is set true.De�ne �(xi) := �0[1]
1[1]�[mi : mi]�(xi) := �1[1]
0[1]�[mi : mi]Translate � [in polynomial time] into the bit-vector equationf(�) := � ��(l11)
�(l12)
�(l13)�[c1 : c1] 
 � � � 
 ��(lm1)
�(lm2)
�(lm3)�[cm : cm]1[1] 
 � � � 
 1[1] !=�The equation f(�) has a solution i� every term �(lj1)
�(lj2)
�(lj3), j = 1; : : : ;m contains at least one 1[1].This is the case, i� at least one of the �(ljp) = 1[1] which is equivalent to ljp = true. Thus, � is satis�ablei� there exists a solution for f(�) and � 2 3CNF -SAT i� f(�) 2 Lt=u-SAT , completing the reduction. �



Appendix CSource CodesAll �les were implemented in Allegro Common Lisp 4.3. It is heavily recommended to use an AllegroLisp dialect in order to process them without further problems. The source-codes can be obtained athttp://www.informatik.uni-ulm.de/ki/Bitvector/C.1 Solve via Mona;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Diploma Thesis:;;; "Solving Bit-Vector Equations;;; - A Decision Procedure for Hardware Verifikation";;;;;; M. Oliver M"oller;;; University of Ulm;;; Faculty for Computer Science (Informatik);;; AI Department (Abteilung fuer k"unstliche Intelligenz);;; Supervising Professor: F. von Henke;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; File: check via mona.cl;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; HOW TO USE: [Allegro Common Lisp Version];; ~~~~~~~~~~~;; (1) Install Mona Version 1.1;; [ to optain eg. at http://www.brics.dk/~mona/index.html ];; (2) Fetch also the files bvec structures.cl and bvec arith.cl;; [ to optain eg. at;; http://www.informatik.uni-ulm.de/ki/Bitvector/ ];; (3) Create a local directory, where Mona can store the;; input-and output files (e.g. mona/);; (4) Modify the constants;; *home-directory* *mona-local-directory-path* *mona-call-exe*;; according to your local settings;; (5) Load common lisp files in this order;; bvec structure.cl;; bvec arith.cl;; check via mona.cl;; [compilation recommended];; (6) Start >> Solver << with;; (solve-via-mona '(bv-equal <term-1> <term-2>));; <term-1> and <term-2> are assumed to be canonized(!);; An example for term structure is given in section * Examples *;; NOTES:;; (a) The notation is NOT identic with the one in the Diploma Thesis;;; Due to an (obsolete) design decision, the least significant;; bit is at the rightmost position and concatenations are the;; other way round as a consequence;;; eg. ( xf4g o yf4g ) ^ (1,0) = yf4g ^ (1,0);; (b) The finite automaton is not put out as a default;;; if the directive "-w" is added to the call to the mona-program;; (cf. function call-mona-program ), the automaton is put to file;; mona output file.txt;; The function solve-via-mona returns one of the symbols;; TAUTOLOGY iff the equation is a tautology;; UNSATISFIABLE iff the equation is unsatisfiable;; COUNTEREXAMPLE if there is a model,;; but the formula is not a tautology;; ERROR if an error occurred;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; General Remarks: This implementation realizes;; 'Solving' fixed bv equations via a transformation to S1S;; And creating an output which can be processed with MONA 1.1;; Strictly speaking, this is not an implementation of a solver;; but a test for TAUTOLOGY or UNSATISFIABILITY;;; This can be used to generate a solving algorithm, by means of;; Repeatedly replace bits of variables with constants;;; [See Diploma Thesis for detailed description];;;; The big revenue of this approach is, that it allows to check;; FIXED SIZE BITVECTOR EQUATIONS WITH LINEAR ARITHMETIC;; AND LOGIC;; for validity (which is the most common usage of decision procedures);; The big drawback is the sometimes horrendous run-time

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;(in-package user);;; ****************************************;;; Constants to Customize;;; ****************************************(defconstant *home-directory* "/home/hiwi/moeller/")(defconstant *mona-local-directory-path*(CLOS::string-append *home-directory* "da/etc/mona/"))(defconstant *mona-call-exe* "/usr/local/share/ai-systems/mona/mona-1.1/mona");;; ************************************************************(defconstant *mona-input-file*(CLOS::string-append *mona-local-directory-path*"mona input file.mona"))(defconstant *mona-output-file*(CLOS::string-append *mona-local-directory-path*"mona output file.txt"))(defconstant *mona-result-file*(CLOS::string-append *mona-local-directory-path*"mona result file.txt"))(defconstant *full-adder-file*(CLOS::string-append *mona-local-directory-path*"fulladder.mona"))(defconstant *allow-complement* nil)(defconstant *negate* nil);;; *negate* = nil -> If the equation is a tautology,;;; Mona will reply 'valid';;; Else Mona will present a counterexample;;; [Here, the automaton is a encoding;;; of the SOLUTION];;; ------------------;;; *negate* = t -> If the equation is unsatisfiable;;; Mona will reply 'valid';;; Else Mona will present a counterexample;;; ------------------(defun solve-via-mona (bv-eq &optional (trigger-mona-on nil)(trigger-mona-off nil));; Returns 'tautology iff the equation is a tautology;; 'unsatisfiable iff the equation is unsatisfiable;; 'counterexample if there is a model,;; but the formula is not a tautology;; 'errir if the mona-output-file is not as expected(ifassert (and (consp bv-eq)(eq (car bv-eq) 'bv-equal)))(ifassert (is-fixed-arith-bool-bv? (cadr bv-eq)))(ifassert (is-fixed-arith-bool-bv? (cadr bv-eq)))(let* ((term1 (rewrite-boolean-logic-AON (cadr bv-eq)))(term2 (rewrite-boolean-logic-AON (caddr bv-eq)))(width (arith-bool-bv-length term1)));; !!! Assume canonized terms !!!(labels ((get-sub-structures (recog?)(remove-duplicates(append (all-recognized-in-arith-bool-bv-term term1 recog?)(all-recognized-in-arith-bool-bv-term term2 recog?)):TEST #'equal)))80



APPENDIX C. SOURCE CODES 81(let* ((vars (sort(get-sub-structures #'(lambda (x) (rec-bv-var? x)))#'(lambda (x y)(string< (bv-var-name x)(bv-var-name y)))));;; (var-names (mapcar #'bv-var-name vars))(var-alen (mapcar #'(lambda (x)'(,(bv-var-name x) . ,(bv-var-length x)))vars))(var-len (loop for pair in var-alen collect (cdr pair)))(var-fnames (mapcar #'(lambda (x)(CLOS::string-append"VAR "(princ-to-string (bv-var-name x))" "(princ-to-string (bv-var-length x))))vars));;; (var-assoc (pairlis var-len var-fnames))(constants (get-sub-structures#'(lambda (x) (rec-bv-const? x))))(additions (get-sub-structures#'(lambda (x) (rec-bv-addition? x))))(negations (get-sub-structures#'(lambda (x) (rec-bv-negation? x))));;! Compl does not work in Mona (early version)(complements (get-sub-structures#'(lambda (x) (rec-bv-negation? x))))(complement-fnames(loop for i from 1 to (length complements) collect(CLOS::string-append "Compl "(princ-to-string i))))(complement-alist(if *allow-complement*nil(pairlis complements complement-fnames)));;! (filter-lengths(remove-duplicates(append var-len(mapcar #'(lambda (x) (bv-addition-modulo x))additions)(mapcar #'(lambda (x) (arith-bool-bv-length x))negations)(mapcar #'bv-extraction-length(get-sub-structures #'(lambda (x) (rec-bv-extraction?x))))))) (filter-fnames(loop for e in filter-lengths collect(CLOS::string-append "Filter "(princ-to-string e))))(filter-assoc (pairlis filter-lengths filter-fnames))(addition-fnames(loop for i from 1 to (length additions) collect(CLOS::string-append "RES "(princ-to-string i))))(constant-fnames(loop for e in constants collect(CLOS::string-append "CONST "(princ-to-string (bv-const-length e))" "(princ-to-string (bv-const-value e)))))(addition-alist (pairlis additions addition-fnames))(constant-alist (pairlis constants constant-fnames))(replace-alist (append (mapcar #'(lambda (x)(cons (car x)(CLOS::string-append"("(cdr x)" inter "(dassoc (bv-addition-modulo (carx)) filter-assoc) ")")))addition-alist)(mapcar #'(lambda (x)(cons (car x)(CLOS::string-append"("(cdr x)" inter "(dassoc (bv-var-length (car x))filter-assoc) ")")))(pairlis vars var-fnames))constant-alist(mapcar #'(lambda (x)(cons (car x)(CLOS::string-append"("(cdr x)" inter "(dassoc (arith-bool-bv-length (carx)) filter-assoc) ")")))complement-alist)));;; --- Create Axioms ---(filter-axioms(loop for e in filter-assoc collect(let ((len (car e))(name (cdr e)))'(all1 "p" (and (=> (< "p" ,len)

(in "p" ,name))(=> (<= ,len "p")(notin "p" ,name)))))))(constant-axioms(loop for e in constant-alist append(let* ((con (car e))(len (bv-const-length con))(val (bv-const-value con))(bits (reverse (nat2bools val len)))(name (cdr e)))'((all1 "p" (=> (<= ,len "p")(notin "p" ,name))),@(loop for i from 0 to (1- len) collect(if (nth i bits)'(in ,i ,name)'(notin ,i ,name)))))))(addition-axioms-strings(loop for e in addition-alist collect(let* ((ad (car e));; (modulo (cadr ad))(args (cddr ad))(len (length args))(name (cdr e)))(eval '(CLOS::string-append"add" ,(princ-to-string len) "(",@(loop for e in args append'(,(translate-form-to-string-with-replace e replace-alist)",")) ,name ")")))));!;(complement-axioms-strings(loop for e in complement-alist collect(CLOS::string-append"Complement( "(translate-form-to-string-with-replace (car (bv-bool-args (care))) replace-alist)" , "(cdr e)" )"))))(labels ((check-via-mona (negate width trigger-on trigger-off);; Ouptut the created Terms(new-mona-file)(output-var2-and-addition-defsvar-fnames(apply #'max(cons 0(mapcar #'(lambda (x)(length (bv-addition-args x)))additions)))width)(output-main-implication(append (mapcar #'(lambda (x) (translate-form-to-string-with-replace x replace-alist))(append filter-axiomsconstant-axioms))addition-axioms-stringscomplement-axioms-strings ;!;)(translate-form-to-string-with-replace term1 replace-alist)(translate-form-to-string-with-replace term2 replace-alist)(append constant-fnamesaddition-fnamesfilter-fnamescomplement-fnames ;!;)negate)(ifuncall trigger-on)(call-mona-program)(ifuncall trigger-off)(scan-mona-output)));;; -- THE ONLY ONE CALL TO MONA --(check-via-mona nil width trigger-mona-on trigger-mona-off))))))(defun translate-form-to-string-with-replace (form alist)(flet ((make-bracket-string (op list)(eval '(CLOS::string-append"(",@(loop for e in (butlast list) collect(CLOS::string-append(translate-form-to-string-with-replace e alist)" " op " ")),(translate-form-to-string-with-replace (car (last list)) alist)")")))(make-intermediate-string (op arg1 arg2)(CLOS::string-append"("(translate-form-to-string-with-replace arg1 alist)" " op " "(translate-form-to-string-with-replace arg2 alist)")"))(make-quantified-string (quan var body)(CLOS::string-append"("quan" "var": "(translate-form-to-string-with-replace body alist)")")))



APPENDIX C. SOURCE CODES 82(cond((assoc form alist :TEST #'equal)(cdr (assoc form alist :TEST #'equal)))((stringp form) form)((integerp form) (princ-to-string form))((consp form)(case (car form)(<=> (make-bracket-string "<=>" (cdr form)))(= (make-bracket-string "=" (cdr form)))(and (make-bracket-string "&" (cdr form)))(or (make-bracket-string "|" (cdr form)))(<= (make-bracket-string "<=" (cdr form)))(=> (make-bracket-string "=>" (cdr form)))(< (make-bracket-string "<" (cdr form)))(> (make-bracket-string ">" (cdr form)))(not (CLOS::string-append"~"(translate-form-to-string-with-replace (cadr form) alist)))(in (make-intermediate-string "in" (princ-to-string (cadr form))(caddr form)))(notin (make-intermediate-string "notin" (princ-to-string (cadr form))(caddr form)))(all0 (make-quantified-string "all0" (cadr form) (caddr form)))(all1 (make-quantified-string "all1" (cadr form) (caddr form)))(all2 (make-quantified-string "all2" (cadr form) (caddr form)))(exist0 (make-quantified-string "exist0" (cadr form) (caddr form)))(exist1 (make-quantified-string "exist1" (cadr form) (caddr form)))(exist2 (make-quantified-string "exist2" (cadr form) (caddr form)))(union (make-bracket-string "union" (cdr form)))(inter (make-bracket-string "inter" (cdr form)))(compl (CLOS::string-append"(compl "(translate-form-to-string-with-replace (cadr form) alist)")"))(+ (translate-offset-to-string-with-replace (cadr form) (caddr form)alist)) (- (translate-offset-to-string-with-replace (cadr form) (- 0 (caddrform)) alist))(bv-compose (translate-composition-to-string-with-replace form alist))(bv-extract (translate-extraction-to-string-with-replace form alist));; -- boolean --(bv-and (translate-form-to-string-with-replace'(inter ,@(bv-bool-args form)) alist))(bv-or (translate-form-to-string-with-replace'(union ,@(bv-bool-args form)) alist))(bv-not (translate-form-to-string-with-replace'(inter (compl ,@(bv-bool-args form)),(CLOS::string-append"Filter "(princ-to-string (arith-bool-bv-length form))))alist))(t (error-misc "translate-form-to-string-with-replace" form "notcaught.")))))))(defun translate-composition-to-string-with-replace (cmp alist)(let* ((args (reverse (bv-composition-content cmp)))(offset 0)(offsets (loop for e in args collect(let ((old offset))(incf offset (arith-bool-bv-length e))old))))(translate-form-to-string-with-replace'(union ,@(loop for e in (pairlis args offsets) collect'(+ ,(translate-form-to-string-with-replace (car e) alist),(cdr e))))alist)))(defun translate-offset-to-string-with-replace (term offset alist)(let ((str (translate-form-to-string-with-replace term alist)))(cond((= offset 0)str)((< offset 0)(CLOS::string-append "(" str " - " (princ-to-string (- 0 offset)) ")"))(t(CLOS::string-append "(" str " + " (princ-to-string offset) ")")))))(defun translate-extraction-to-string-with-replace (extr alist)(let ((len (bv-extraction-length extr))(bv (bv-extraction-bv extr))(off (bv-extraction-right extr)))(translate-form-to-string-with-replace'(inter (- ,bv ,off),(CLOS::string-append "Filter " (princ-to-string len)))alist)));;; ****************************************;;; AUXillary Functions;;; ****************************************(defun create-filter-names (n)(loop for i from 1 to n collect(CLOS::string-append "Filter"(princ-to-string i))))(defun dassoc (a alist)(cdr (assoc a alist :TEST 'equal)))

(defun rewrite-boolean-logic-AON (term);; Replace boolean operations: XOR;; By AND OR NOT(cond((rec-bv-var? term)term)((rec-bv-const? term)term)((rec-bv-extraction? term)(make-bv-extraction(rewrite-boolean-logic-AON (bv-extraction-bv term))(bv-extraction-left term)(bv-extraction-right term)))((rec-bv-composition? term)(make-bv-composition-from-list(mapcar #'rewrite-boolean-logic-AON(bv-composition-content term))))((rec-bv-addition? term)(make-bv-addition-from-list(bv-addition-modulo term)(mapcar #'rewrite-boolean-logic-AON(bv-addition-args term))))((rec-bv-bool? term)(case (bv-recognizer term)(bv-and term)(bv-or term)(bv-not term)(bv-xor (let ((x (rewrite-boolean-logic-AON(car (bv-bool-args term))))(y (rewrite-boolean-logic-AON(cadr (bv-bool-args term)))))(make-bv-or (make-bv-and (make-bv-not x) y)(make-bv-and x (make-bv-not y)))))(t (error-misc "rewrite-boolean-logic-AON [bool]" term "not caught."))))(t (error-misc "rewrite-boolean-logic-AON" term "not caught."))));;; **************************************************;;; File Handling;;; **************************************************(defun new-mona-file ()(with-open-file (stream *mona-input-file*:direction :output:if-exists :supersede:if-does-not-exist :create)(format stream "## Check Fixed Sized Bit Vector Equations via Mona1.1~%")(format stream "## part of Diploma Thesis~%")(format stream "## M. Oliver Moeller 1997~%")(format stream "linear;~%")))(defun output-var2-and-addition-defs (names add-upto width)(with-open-file (stream *mona-input-file*:direction :output:if-does-not-exist :error:if-exists :append)(loop for n in names do(format stream "var2 ~a;~%" n))(if (> add-upto 1)(progn(with-open-file (include *full-adder-file*:direction :input:if-does-not-exist :error)(loop for i from 1 to (file-length include) do(princ (read-char include) stream)))(create-addition-predicates add-upto stream)))(unless *allow-complement*(format stream "~%pred Complement(var2 X,Y) = all1 p : (p < ~d) =>( (p in X) <=> (p notin Y));~%~%" width))))(defun output-main-implication (axiom-stringlist str1 str2 existential-quantified negate)(with-open-file (stream *mona-input-file*:direction :output:if-does-not-exist :error:if-exists :append)(flet ((conjunction-output-if (list)(if (null list)(format stream " true ")(progn(format stream " (")(loop for a in (butlast list) do(format stream "~a & ~% " a))(format stream "~a )" (car (last list)))))))(format stream "~%## Check the following ~a Implication:~%~a("(if negate "(negated)" "")(if (consp existential-quantified)(eval'(CLOS::string-append,(if negate "~(" "(")"ex2 ",@(loop for e in (butlast existential-quantified) append'(,e ",")),(car (last existential-quantified))": "))""))(conjunction-output-if axiom-stringlist)



APPENDIX C. SOURCE CODES 83(format stream " &~% ( ~a~% = ~a ) ) );~%" str1 str2))))(defun call-mona-program ()(shell(CLOS::string-append*mona-call-exe*" -c -u "*mona-input-file*" 2> "*mona-output-file*" 1> "*mona-output-file*)))(defun scan-mona-output ()(let ((res 'error))(flet ((testfor (string)(shell (CLOS::string-append"egrep "" '" string "' "*mona-output-file* " > "*mona-result-file*))(with-open-file (stream *mona-result-file*:direction :input:if-does-not-exist :error)(if (> (file-length stream)0)tnil))))(cond((testfor "Formula is valid")(setf res 'tautology))((testfor "Counter-example")(setf res 'counterexample))((testfor "Formula is unsatisfiable")(setf res 'unsatisfiable)))res)));;; ******************************;;; Creating Formulae;;; ******************************(defun create-addition-predicates (n stream);; from binary to n-ary terms(flet ((add-pred (i)(let ((vars (loop for j from 1 to i collect(CLOS::string-append "S"(princ-to-string j)))))(eval'(CLOS::string-append"pred add" ,(princ-to-string i) "(var2 ",@(loop for e in vars append'(,e ","))"Result) = ~% ex2 Z: add",(princ-to-string (1- i))"(",@(loop for e in (butlast vars) append'(,e ","))"Z) & ~% add2(Z,",(car (last vars))",Result);~%~%")))))(loop for i from 3 to n do(format stream (add-pred i)))));;; ************;;; * Examples *;;; ************(defun ex-1 () ;;; TAUTOLOGY(solve-via-mona'(bv-equal(bv-addition 4(bv-compose(bv-extract (bv-var x 4) (tupcons 2 0))(bv-const 0 1))(bv-const 1 4)(bv-const 0 4)(bv-const 0 4))(bv-compose (bv-extract (bv-var x 4) (tupcons 2 0))(bv-const 1 1)))))(defun ex-2 () ;;; UNSATISFIABLE(solve-via-mona'(bv-equal(bv-compose (bv-var x 5) (bv-const 1 1))(bv-compose (bv-const 0 1) (bv-var x 5)))))(defun ex-3 () ;;; COUNTEREXAMPLE(solve-via-mona'(bv-equal(bv-addition 3 (bv-var x 3) (bv-var y 3))(bv-const 3 3))))

C.2 Fixed Solver;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Diploma Thesis:;;; "Solving Bit-Vector Equations;;; - A Decision Procedure for Hardware Verifikation";;;;;; M. Oliver M"oller;;; University of Ulm;;; Faculty for Computer Science (Informatik);;; AI Department (Abteilung fuer kuenstliche Intelligenz);;; Supervising Professor: F. von Henke;; ------------------------------------------------------------;; - SOLVER FOR BITVECTOR-THEORY;; - ~~~~~~~~~~~~~~~~~~~~~~~~~~~;; - WITH +fixed size;; - +fixed extraction;; - +composition;; - +boolean operations;; - +artithmetic [via OBDDs];; -----------------------------------------------------------;; - Oliver M"oller (moeller@ki.informatik.uni-ulm.de);; -----------------------------------------------------------;; - File: bvec fixed solver;; - Purpose: Provides canonizer fixed-sigma;; - and solver fixed-bv-solve;; - Requires: bvec structure.cl;; - bvec bdd solve.cl;; - bvec arith.cl;; - bvec slicing.cl;; -----------------------------------------------------------;; - USAGE:;; - Load and compile the required files in the listed order;;; - Call (fixed-bv-solve (BV-EQUAL <term1> <term2>));; - [for term structure refer to bvec structure.cl];; - The function returns list, that contains;; - (a) the symbol 'TRUE if the equation is a tautology;; - (b) the symbol 'FALSE if the equation is unsatisfiable;; - (c) else, a number of lists;; - (BV-EQUAL <original variable> <bv-term>);; -----------------------------------------------------------;; NOTE:;; The term notation is NOT identic with the one in the;; Diploma Thesis!;; Due to an (obsolete) design decision, the least significant;; bit is at the rightmost position and concatenations are the;; other way round as a consequence;;; eg. ( xf4g o yf4g ) ^ (1,0) = yf4g ^ (1,0);;;; Allegro Common Lisp Version;; BEGUN: 1/9/1998;;;; ++++++++++++++++++++++++;; + General Settings;; ++++++++++++++++++++++++(in-package user);;; observing(defconstant *obs-fs* nil)(defmacro obs-fs (arg)(if *obs-fs* arg))(defvar *heuristic-node-prior* 0)(defvar *heuristic-node-post* 0);;; ** Loading **(defun l1 () (load "/home/hiwi/moeller/da/lisp/bvec fixed solver.cl"))(defun ll ()(load "/home/hiwi/moeller/da/lisp/bvec structure.cl")(load "/home/hiwi/moeller/da/lisp/bvec bdd solve.cl")(load "/home/hiwi/moeller/da/lisp/bvec arith.cl")(load "/home/hiwi/moeller/da/lisp/bvec slicing.cl")(load "/home/hiwi/moeller/da/lisp/bvec fixed solver.cl"))(defun cc ()(compile-file "/home/hiwi/moeller/da/lisp/bvec structure.cl")(compile-file "/home/hiwi/moeller/da/lisp/bvec bdd solve.cl")(compile-file "/home/hiwi/moeller/da/lisp/bvec arith.cl")(compile-file "/home/hiwi/moeller/da/lisp/bvec slicing.cl")(compile-file "/home/hiwi/moeller/da/lisp/bvec fixed solver.cl");-(load "/home/hiwi/moeller/da/lisp/bvec structure.fasl")(load "/home/hiwi/moeller/da/lisp/bvec bdd solve.fasl")(load "/home/hiwi/moeller/da/lisp/bvec arith.fasl")(load "/home/hiwi/moeller/da/lisp/bvec slicing.fasl")(load "/home/hiwi/moeller/da/lisp/bvec fixed solver.fasl"));;;; -------------------------------------------------------------;;;; -------------------------------------------------------------;;;; THE CANONIZER ----------------------------------------------;;;; -------------------------------------------------------------;;;; -------------------------------------------------------------



APPENDIX C. SOURCE CODES 84(defun fixed-sigma (bv);; (ifassert (is-fixed-bv? bv))(fixed-beta (fixed-alpha bv)))(defun fixed-alpha (bv)(cond((or (rec-bv-var? bv)(rec-bv-const? bv))bv)((rec-bv-composition? bv)(make-bv-composition(fixed-alpha (bv-decompose-left bv))(fixed-alpha (bv-decompose-right bv))))((rec-bv-extraction? bv)(fixed-alpha-extraction bv))((rec-bv-bool-apply? bv)(fixed-gamma bv))((node-p bv)(lift-bdd-if bv))((rec-bv-addition? bv)(fixed-delta bv))(t (error-misc "fixed-alpha" bv "not caught."))))(defun fixed-alpha-extraction (bv)(let* ((arg (fixed-alpha (bv-extraction-bv bv)))(left (bv-extraction-left bv))(right (bv-extraction-right bv))(len (bv-length arg))(times (1+ (- left right))))(cond((eq len times) arg)((rec-bv-extraction? arg)(fixed-alpha-extraction(make-bv-extraction(bv-extraction-bv arg)(+ left (bv-extraction-right arg))(+ right (bv-extraction-right arg)))))((rec-bv-composition? arg)(let* ((bv-left (bv-decompose-left arg))(bv-right (bv-decompose-right arg))(lr (bv-length bv-right)))(cond((< left lr)(fixed-alpha-extraction(make-bv-extraction bv-right left right)))((>= right lr)(fixed-alpha (make-bv-extraction bv-left (- left lr) (- right lr))))(t (make-bv-composition(fixed-alpha-extraction(make-bv-extraction bv-left (- left lr) 0))(fixed-alpha-extraction(make-bv-extraction bv-right (- lr 1) right)))))))((rec-bv-const? arg)(extract-bv-const (bv-const-value arg) left right))((rec-bv-var? arg) (make-bv-extraction arg left right))((rec-bv-bool-apply? arg)(fixed-gamma (make-bv-bool-apply (car arg)(mapcar #'(lambda (x) (fixed-alpha(make-bv-extraction x left right))) (cdr arg)))))((node-p arg)(fixed-bdd-extraction arg left right));;--!-- tbc(t (error-misc "fixed-alpha-extraction" bv "not caught.")))))(defun fixed-bdd-extraction (arg left right);; Extract in all nodes...(let ((content (fixed-alpha(make-bv-extraction (node-variable arg) left right)))(n (1+ (- left right)))(then (node-then arg))(else (node-else arg)))(if (leaf-node? arg)(cond((true-node? arg) (make-true-node n))((false-node? arg) (make-false-node n))(t (error-misc "fixed-bdd-extraction" arg "illegal leaf node.")))(make-unique-node:VARIABLE content:ELSE (fixed-bdd-extraction else left right):THEN (fixed-bdd-extraction then left right)))))(defun fixed-beta (bv)(if (rec-bv-composition? bv)(let* ((list (bv-composition-content bv))(actual (car list))(next (cadr list))(rest (cddr list))(res nil))(flet ((matches ()(or (and (rec-bv-const? actual)(rec-bv-const? next))(and (rec-bv-extraction? actual)(rec-bv-extraction? next)(equal (bv-extraction-bv actual)(bv-extraction-bv next))(= (1+ (bv-extraction-left next))

(bv-extraction-right actual)))(and (node-p actual)(node-p next)(nodes-match? actual next))))(melt ()(setfactual (cond((rec-bv-const? actual)(append-bv-const actual next))((rec-bv-extraction? actual)(fixed-alpha (make-bv-extraction(bv-extraction-bv actual)(bv-extraction-left actual)(bv-extraction-right next))))((node-p actual)(attach-nodes actual next))(t (error "[local]melt" actual "not caught.")))next (car rest)rest (cdr rest))))(loop while next do(loop while (and next (matches)) do (melt))(push actual res)(setf actual nextnext (car rest)rest (cdr rest)))(if actual (push actual res))(make-bv-composition-from-list (reverse res))))bv))(defun fixed-gamma (bv);; Turns boolan expressions into BDDs(cond((node-p bv) bv)((rec-bv-bool-apply? bv)(let* ((op (car bv))(args (mapcar #'(lambda (x)(fixed-alpha(flatten-bv-constants x)))(cdr bv)))(slicing (overlay-vector-list(mapcar #'bv-term-to-slicing args)))(arg-lists (ziplis (mapcar #'(lambda (x)(mapcar #'lift-to-bdd(slice-bv-term x slicing)))args))));;(princ (format nil "ARGS : ~a~%ARG-LISTS:~a~%" args arg-lists))(make-bv-composition-from-list(mapcar #'(lambda (x) (lift-bdd-if(bdd-apply-n op x (bv-length (car x)))))arg-lists))))(t (error-misc "fixed-gamma" bv "not caught."))))(defun fixed-delta (bv);; canonize an bv-addition (!)(let* ((len (bv-addition-modulo bv))(args (bv-addition-args bv))(nargs (length args)))(case nargs(0 (make-bv-const 0 len))(1 (fixed-alpha (car args)))(2 (let ((slicing (make-fullslice len)))(init-leaf-nodes 1)(make-bv-composition-from-list(riple-carry-add (pairlis(mapcar #'lift-to-bdd (slice-bv-term (first args)slicing)) (mapcar #'lift-to-bdd (slice-bv-term (second args)slicing))) *false-node*))))(t (fixed-delta(make-bv-addition-from-listlen(cons (fixed-delta(make-bv-addition len (car args) (cadr args)))(cddr args))))))));;; &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&;;; T H E S O L V E R;;; &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&(defun fixed-bv-solve (eq &key (stream nil)(heuristic-level 0)(call-after-canon nil));;; Heuristics:;;; 0: No melting of BDDs in advance of solving;;; 1: Melting on connect= ONE node matches (factor oo);;; 3: Melting on connect= factor 4;;; 5: Melting on connect= factor 2.5;;; 7: Melting on connect= factor 2;;; 9: Melting on connect= factor 2.4(ifassert (is-fixed-arith-bv-equation? eq))(ifassert (eq (bv-length (second eq)) (bv-length (third eq))))(setf *heuristic-node-prior* 0*heuristic-node-post* 0)(let ((term1 (flatten-bv-constants (fixed-sigma (second eq))))(term2 (flatten-bv-constants (fixed-sigma (third eq)))))(ifassert (eq (bv-length term1) (bv-length term2)))(ifuncall call-after-canon)(obs-fs (princ (format nil "Term1: ~a~%" term1) stream))(obs-fs (princ (format nil "Term2: ~a~%" term2) stream))



APPENDIX C. SOURCE CODES 85(fail-closure :SET nil)(if (equalp term1 term2)'(TRUE)(let* ((dummy (obs-fs (princ (format nil "#################Starting Csolve ###############~%") stream)))(heuristically-combined nil)(not-trivially-true nil)(slice (overlay-vector-list(list (bv-term-to-slicing term1)(bv-term-to-slicing term2))))(eqs (remove-duplicates(pairlis(slice-bv-term term1 slice)(slice-bv-term term2 slice)):TEST #'same-pair?))(bool-eqs (if (= 1 (logand 1 heuristic-level))(remove-if-not #'(lambda (x) (or (node-p (car x))(node-p (cdr x))))eqs)))(eqs (if (= 1 (logand 1 heuristic-level))(remove-if #'(lambda (x) (or (node-p (car x))(node-p (cdr x))))eqs)eqs)) ;; non-bool-eqs(vars (remove-duplicates(append (loop for vs in (mapcar #'car eqs) append(all-vars-in-bv-term vs))(loop for vs in (mapcar #'cdr eqs) append(all-vars-in-bv-term vs))(loop for vs in (mapcar #'car bool-eqs) append(all-vars-in-bv-term vs))(loop for vs in (mapcar #'cdr bool-eqs) append(all-vars-in-bv-term vs))):TEST #'equal))(nvars (length vars))(blocks (make-array (length vars) :initial-element nil))(slices (loop for v in vars collect(make-nullslice (bv-var-length v))))(changes t)(final nil))(declare (ignore dummy))(labels ((fresh-var-call (var)(nconc vars (list var))(nconc slices (list (make-nullslice (bv-var-length var)))))(var-pos (var) (position var vars :TEST #'equal))(var-slice (var)(obs-fs (princ (format nil "-- (var-slice ~a) --> " var) stream))(let ((res(cond((rec-bv-var? var) (nth (var-pos var) slices))((rec-bv-const? var)(make-nullslice (bv-const-length var)))((rec-bv-extraction? var)(extract-slice (nth (var-pos (bv-extraction-bv var)) slices)(bv-extraction-left var)(bv-extraction-right var)))((and (node-p var)(leaf-node? var))(make-nullslice (bv-length var)))((node-p var)(overlay-vector-list(mapcar #'var-slice (vars-of-node var))))(t (error-misc "(local) var-slice" var "not caught.")))))(obs-fs (princ (format nil "~a~%" res) stream))res))(entry-slice-var (extr)(obs-fs (princ (format nil "-- (entry-slice-var ~a) --> ~a~%" extr"?") stream))(cond((rec-bv-const? extr))((rec-bv-var? extr))((node-p extr)(mapcar #'entry-slice-var (all-bdd-nodes extr)))((rec-bv-extraction? extr)(let ((var (bv-extraction-bv extr))(left (bv-extraction-left extr)));; only there is the new cut:(setf (aref (var-slice var) left) t)))(t (error-misc "[local]entry-slice-var" extr "not caught."))));;;(has-failed? () (not possibly-solvable));;;(fail () (setf possibly-solvable nil)))(obs-fs (princ (format nil "Original Vars: ~a~%" vars) stream))(loop for extr in (append (all-recognized-in-arith-bool-bv-term term1#'(lambda (x) (rec-bv-extraction? x)))(all-recognized-in-arith-bool-bv-term term2#'(lambda (x) (rec-bv-extraction? x)))) do(entry-slice-var extr))(loop for e in eqs do(obs-fs (princ (format nil "csolve[~a = ~a]~%" (car e) (cdr e))stream)) (loop for b in (fixed-csolve (car e) (cdr e):FRESH-VAR-CALL #'fresh-var-call:FAIL #'fail-closure) do(obs-fs (princ (format nil " => ~a = ~a~%" (car b) (cdr b))stream)) (setf not-trivially-true t)(push (cdr b)(aref blocks (var-pos (car b)))))

(if (has-failed?) (return)))(setf heuristically-combined (heuristically-combine bool-eqs:STREAM stream:HEURISTIC-LEVEL heuristic-level))(if (some #'false-node? heuristically-combined)(fail-closure)(loop for e in (heuristically-combine bool-eqs:STREAM stream:HEURISTIC-LEVEL heuristic-level)do(obs-fs (princ (format nil "csolve[~a = TRUE]~%" e) stream))(loop for b in (fixed-csolve-bdd e:FRESH-VAR-CALL #'fresh-var-call:FAIL #'fail-closure) do(obs-fs (princ (format nil " => ~a = ~a~%" (car b) (cdr b))stream)) (setf not-trivially-true t)(push (cdr b)(aref blocks (var-pos (car b)))))(if (has-failed?) (return))))(obs-fs (princ (format nil "Vars : ~a~%Slices : ~a~%" vars slices)stream));;; ------------------------------(if (has-failed?) (return-from fixed-bv-solve '(FALSE)))(unless not-trivially-true (return-from fixed-bv-solve '(TRUE)));;; ------------------------------;;; Coarsest Slicing;;; ------------------------------(obs-fs (princ (format nil "################# StartingCoarsest Slicing ###############~%") stream))(loop while changes do(setf changes nil)(loop for i from 0 to (1- nvars) do(let* ((sl (nth i slices))(sl-old (copy-slicing sl)))(loop for term in (aref blocks i) do(let ((slice-list (mapcar #'var-slice(reverse (bv-flat-term-content term)))))(or-of-slices! sl slice-list)(and-of-slices! sl-old slice-list)))(unless (equalp sl sl-old)(setfchanges t(aref blocks i)(mapcar #'(lambda (x)(make-bv-composition-from-list(slice-bv-term x sl :ENTRY-SLICE-VAR#'entry-slice-var))) (aref blocks i)))))));;; ------------------------------;;; Propagation of Equality;;; ------------------------------(obs-fs (princ (format nil "################## StartingPropagation #####################~%") stream))(obs-fs (princ (format nil "Vars : ~a~%Slices : ~a~%Blocks : ~a~%"vars slices blocks) stream))(setf final(mapcar #'fixed-beta(process-fixed-propagation(loop for i from 0 to (1- nvars) collect(let ((j 0)(columns (make-list (length (slicing-to-chop-list (nth islices))) :initial-element nil)))(loop for line in (aref blocks i) do(setf j 0)(loop for term in (bv-flat-term-content line) do(pushnew term (nth j columns):TEST #'equalp)(incf j)))columns)):FAIL #'fail-closure:HAS-FAILED? #'has-failed?:STREAM stream)));;;--------------------;;; END;;;--------------------(obs-fs (loop for i from 0 to (1- nvars) do(princ (format nil "~a = ~a~%" (nth i vars) (nth i final))stream)));;;--------------------(if (has-failed?)'(FALSE)(loop for i from 0 to (1- nvars) collect(make-bv-equation(nth i vars)(nth i final)))))))));;; ******************************;;; Failing Closure;;; ******************************(defun fail-closure (&key (set t) (quest nil))(defvar *internal-fail-var*)(cond(quest *internal-fail-var*)(t (setf *internal-fail-var* set))))(defun has-failed? ()(fail-closure :QUEST t))



APPENDIX C. SOURCE CODES 86;;; ---(defun pair-starts-with-1? (x)(eq (car x) 1));;; ========================================(defun fixed-csolve (t1 t2 &key (fresh-var-call nil)(fail #'break));;; Chunk-Solve;;; where t1 and t2 are flat terms;;; when creating fresh variables, fresh-var-call is called with;;; the fresh var as an argument(cond((equal t1 t2) nil)((and (rec-bv-const? t1)(rec-bv-const? t2))(ifuncall fail) nil)((or (node-p t1)(node-p t2))(fixed-csolve-bdd (bdd-apply-n 'BV-EQUIV'(,(lift-to-bdd t1) ,(lift-to-bdd t2))(bv-length t1)):FRESH-VAR-CALL fresh-var-call:FAIL fail))((rec-bv-const? t1)(list (cons (fixed-bv-content t2)(pad-fixed-bv-if t1 t2 :FRESH-VAR-CALL fresh-var-call))))((rec-bv-const? t2)(list (cons (fixed-bv-content t1)(pad-fixed-bv-if t2 t1 :FRESH-VAR-CALL fresh-var-call))));;; Two non-constants!((and (rec-bv-var-or-var-extract? t1)(rec-bv-var-or-var-extract? t2))(fixed-csolve-var-var t1 t2 :FRESH-VAR-CALL fresh-var-call))(t (error-misc "fixed-csolve" (list t1 t2) "not caught."))))(defun fixed-csolve-var-var (t1 t2 &key (fresh-var-call nil))(let ((v1 (fixed-bv-content t1))(v2 (fixed-bv-content t2)))(if (equal v1 v2);;; csolve-same-var [extraction, neccessarily](let* ((len (bv-var-length v1))(l1 (bv-extraction-left t1))(r1 (bv-extraction-right t1))(l2 (bv-extraction-left t2))(r2 (bv-extraction-right t2))(hl (max l1 l2))(ll (min l1 l2))(hr (max r1 r2))(lr (min r1 r2)))(if (< ll hr)(let ((common (make-fresh-bv-var (1+ (- hl hr)):FRESH-VAR-CALL fresh-var-call)))(list(consv1 (make-bv-composition-from-list(list (make-fresh-bv-var (- len hl 1):FRESH-VAR-CALL fresh-var-call)common(make-fresh-bv-var (- hr ll 1):FRESH-VAR-CALL fresh-var-call)common(make-fresh-bv-var lr:FRESH-VAR-CALL fresh-var-call))))))(let* ((delta (- hr lr))(overlap (1+ (- ll hr)))(gamma (+ overlap delta delta))(k-times (DIV gamma delta))(lambda (MOD gamma delta))(fresh1 (make-fresh-bv-var lambda:FRESH-VAR-CALL fresh-var-call))(fresh2 (make-fresh-bv-var (- delta lambda):FRESH-VAR-CALL fresh-var-call)))(list(cons v1(fixed-alpha(pad-fixed-bv-if(make-bv-composition-from-list(cons fresh1 (loop for i from 1 to k-times append(list fresh2 fresh1))))(make-bv-extraction v1 hl lr):FRESH-VAR-CALL fresh-var-call)))))));; -- different vars --(let ((fresh (make-fresh-bv-var (bv-length t1) :FRESH-VAR-CALLfresh-var-call)))(list(cons v1 (pad-fixed-bv-if fresh t1 :FRESH-VAR-CALL fresh-var-call))(cons v2 (pad-fixed-bv-if fresh t2 :FRESH-VAR-CALL fresh-var-call)))))))(defun fixed-csolve-bdd (node &key (fresh-var-call nil)(fail nil))(let* ((len (bv-length node)))(init-leaf-nodes len)(loop for res in (bdd-solve node:FRESH-VAR-CALL fresh-var-call

:FAIL fail) collect(cons(fixed-bv-content (car res))(pad-fixed-bv-if (cdr res) (car res) :FRESH-VAR-CALL fresh-var-call)))))(defun heuristically-combine (bool-eq-list &key (stream nil)(heuristic-level 1));;; Heuristic-Level: 1 -> weakly connected;;; 3 -> only strongly connected;;; 5 -> only heavy connected(setf *heuristic-node-prior* (length bool-eq-list))(unless (null bool-eq-list)(let ((phi (loop for b in bool-eq-list collect(let ((node (bdd-apply-n 'BV-EQUIV'(,(lift-to-bdd (car b)),(lift-to-bdd (cdr b)))(bv-length (car b)))))(cons node (all-bdd-nodes node)))))(actual nil)(res nil)(changes nil))(flet ((connected? (a b)(case heuristic-level(1 (not (null (intersection (cdr a) (cdr b) :TEST #'equal))))(3 (<= (+ (length (cdr a)) (length (cdr b)))(* 4 (length (intersection (cdr a) (cdr b) :TEST #'equal)))))(5 (<= (+ (length (cdr a)) (length (cdr b)))(* 2.5 (length (intersection (cdr a) (cdr b) :TEST#'equal))))) (7 (= (+ (length (cdr a)) (length (cdr b)))(* 2 (length (intersection (cdr a) (cdr b) :TEST #'equal)))))(9 (<= (+ (length (cdr a)) (length (cdr b)))(* 2.4 (length (intersection (cdr a) (cdr b) :TEST#'equal))))) ;; Testbed(t (error-misc "heuristically combine" (list heuristic-level)"unknown heuristic")))))(loop while phi do(setf actual (car phi)phi (cdr phi)changes t)(loop while changes do(setf changes nil)(loop for new in phi do(if (connected? actual new)(let ((new-node (bdd-apply-n 'BV-AND '(,(car actual),(car new)) (bv-length (car actual)))))(setf changes tactual (cons new-node (all-bdd-nodes new-node))phi (delete new phi :TEST #'equalp))(return)))))(push (car actual) res))(obs-fs (princ (format nil "Heuristically combine resulted in ~dNodes:~%~a~%" (length res) res) stream))(setf *heuristic-node-post* (length res))res))));;; ===============================(defun process-fixed-propagation (llist &key (fail #'break)(has-failed? #'break)(stream nil));; Propagate equality within a list of lists of equivalence classes;; [each list representing one original variable];; builds assoc-list representing the union-find-structure;; Returns a list of terms(let* ((alist nil)(all-contents (loop for e in llist append(apply #'append e)))(flats (remove-if #'is-bv-const?(loop for cont in all-contentsappend(if (node-p cont)(all-bdd-nodes cont)'(,cont)))))(flat-times (mapcar #'(lambda (x) (count x flats :TEST #'equal))flats))(flat-zip (pairlis flat-times flats))(one-timers(mapcar #'cdr(remove-if-not #'pair-starts-with-1? flat-zip)))(bdds (remove-if-not #'node-p(remove-duplicates all-contents :TEST #'equal)))(n-bdds (length bdds))(num-to-bdd (pairlis (count-up n-bdds) bdds))(rep-llist (loop for var in llist collect(loop for column in var collect(loop for entry in column collect(if (node-p entry)(find-via-rassoc entry num-to-bdd :TEST#'eq) entry)))))(chunks (remove-duplicates flats :TEST #'equal))(chunk-to-indices(loop for c in chunks collect(cons c(loop for b in bdds append(if (member c (all-bdd-nodes b) :TEST #'equal)(list (car (rassoc b num-to-bdd))))))))



APPENDIX C. SOURCE CODES 87(classes(loop for varcl in rep-llist append(loop for cl in varcl collect(set-difference cl one-timers :TEST #'equal)))))(labels ((replace-in-indices (chunk bdd)(if bdds(loop for i in (cdr (assoc chunk chunk-to-indices :TEST#'equal)) do (let* ((old-bdd (cdr (assoc i num-to-bdd)))(old-chks (all-bdd-nodes old-bdd))(new-bdd (bdd-compose old-bdd (lift-to-bdd bdd)chunk)) (new-chks (all-bdd-nodes new-bdd))(obsolete (set-difference old-chks new-chks:TEST #'equal))(newcomers (set-difference new-chks old-chks)))(obs-fs (princ (format nil "Replacing [~d] ~a~%via ~a<- ~a~%by ~a~%" i old-bdd chunk bdd new-bdd) stream))(setf num-to-bdd(cons (cons i new-bdd)(delete i num-to-bdd :TEST #'(lambda (x y) (eqx (car y))))));;; The following, strangely, does not work;;; (setf (cdr (assoc i num-to-bdd)) new-bdd)(loop for c in obsolete do(let ((find (assoc c chunk-to-indices :TEST #'equal)))(if find(setf (nth (position find chunk-to-indices :TEST#'equal) chunk-to-indices)(delete i find)))))(obs-fs (princ (format nil "chunk-to-indices afterdeleting:~%~a~%" chunk-to-indices) stream))(loop for c in newcomers do(insert-index c i))))));;;--------------------(insert-index (c ind)(let ((find (assoc c chunk-to-indices :TEST #'equal)))(if find(setf (nth (position c chunk-to-indices:TEST #'(lambda (x y) (equal x (car y))))chunk-to-indices)(nconc find '(,ind)))(push (list c ind) chunk-to-indices))(obs-fs (princ (format nil "New index for ~a: ~a~%Chunk-to-indices: ~a~%" c ind chunk-to-indices) stream))));;; ----------------(fs-merge (a b)(let ((af (find-via-assoc a alist))(bf (find-via-assoc b alist)))(obs-fs (princ (format nil "-- merging: ~a~% ~a~%" afbf) stream)) (cond((equal af bf))((and (rec-bv-const? af)(rec-bv-const? bf))(ifuncall fail)(return-from process-fixed-propagation nil));;; --- here check for booleans:((or (numberp af)(numberp bf))(let* ((bdd1 (lift-to-bdd (find-via-assoc af num-to-bdd)))(bdd2 (lift-to-bdd (find-via-assoc bf num-to-bdd)))(n (bv-length bdd1))(node (bdd-apply-n 'BV-EQUIV '(,bdd1 ,bdd2) n)))(loop for eq in (bdd-solve node :FAIL fail) do(obs-fs (princ (format nil "..merge ~a => ~a~%" (careq) (cdr eq)) stream))(if (ifuncall has-failed?)(return-from process-fixed-propagation nil))(if (node-p (cdr eq))(progn(loop for c in (all-bdd-nodes (cdr eq)) do(insert-index c n-bdds))(replace-in-indices (car eq) (cdr eq))(push (cons n-bdds (cdr eq)) num-to-bdd)(push (cons (car eq) n-bdds) alist)(incf n-bdds))(progn(replace-in-indices (car eq) (cdr eq))(push eq alist))))))((rec-bv-const? af)(setf alist (acons bf af alist))(replace-in-indices bf af))(t (setf alist (acons af bf alist))(replace-in-indices af bf))))))(obs-fs (progn(princ (format nil "BDD-Embeddings:~%~a~%" num-to-bdd)stream) (princ (format nil "Chunks-to-Indices:~%~a~%" chunk-to-indices)stream) (princ (format nil "Equivalence Classes:~%") stream)(loop for cl in classes do(princ (format nil "~a,~%" cl) stream))))(loop for c in classes do;; sometimes better: other order!(unless (null c)(let ((a (find-via-assoc (car c) alist)))(loop for b in (cdr c) do(fs-merge a b)))))(obs-fs (princ (format nil "BDD-Embedding:~%~a~%Alist: ~a~%->

Combining result~%" num-to-bdd alist) stream))(let ((i -1))(loop for origc in rep-llist collect(progn(obs-fs (princ (format nil "Column-list: ~a~%" origc) stream))(make-bv-composition-from-list(loop for column in origc collect(progn(incf i)(lift-bdd-if(or (find-via-assoc (car (nth i classes)) (append alistnum-to-bdd)) (make-fresh-bv-var (bv-length (car column))))))))))))))(defun find-via-assoc (el alist &key (test #'equal))(let ((res (assoc el alist :TEST test)))(if (null res)el(find-via-assoc (cdr res) alist))))(defun find-via-rassoc (el alist &key (test #'equal))(let ((res (rassoc el alist :TEST test)))(if (null res)el(find-via-rassoc (car res) alist))))(defun fixed-bv-content (term)(cond((rec-bv-var? term) term)((rec-bv-extraction? term) (bv-extraction-bv term))(t (error-misc "fixed-bv-content" term "not caught."))))(defun pad-fixed-bv-if (term pattern &key (fresh-var-call nil));;; returns a eventually padded bv-term with >term< in the middle;;; according to pattern (possibly an extraction)(cond;; no padding((rec-bv-var? pattern)term)((rec-bv-extraction? pattern)(let ((len (bv-length (bv-extraction-bv pattern)))(left (bv-extraction-left pattern))(right (bv-extraction-right pattern)))(make-bv-composition-from-list(list (make-fresh-bv-var (- len left 1) :FRESH-VAR-CALL fresh-var-call)term(make-fresh-bv-var right :FRESH-VAR-CALL fresh-var-call)))))(t (error-misc "pad-fixed-bv-if" pattern "not caught"))))(defun same-pair? (x y)(or (equalp x y)(and (equalp (car x) (cdr y))(equalp (car y) (cdr x)))));;; ********************;;; Examples;;; ********************(defun ex-1 () ;;; TAUTOLOGY(fixed-bv-solve'(BV-EQUAL(bv-addition 4 (bv-var x 4) (bv-var y 4))(bv-addition 4 (bv-var y 4) (bv-var x 4)))))(defun ex-2 () ;;; UNSATISFIABLE(fixed-bv-solve'(BV-EQUAL (bv-compose (bv-var x 16) (bv-extract (bv-var x 16)(tupcons 11 0)))(bv-compose (bv-var y 4) (bv-const 0 12) (bv-const 0 12)))))(defun ex-3 () ;; Satisfiable but not valid(fixed-bv-solve'(bv-equal(bv-and (bv-var x 3)(bv-var y 3))(bv-var x 3))))
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