Solving Bit-Vector Equations

A Decision Procedure for Hardware Verification

Diploma Thesis at the University of Ulm

Faculty of Computer Science

submitted by:

Michael Oliver Moller
1. Supervisor: Prof. Dr. Friedrich W. von Henke

2. Supervisor: Prof. Dr. Uwe Schoning

1998

[Patchlevel: 16-April-1998]

In the Beginning

the world was void.

And then a voice came and spoke:
There shalt be Zero and One.
There shalt be a difference
between dark and light,

earth and sky

water and land.

Humanaity came.

And they claimed

to discover things like
night and day

truth and beauty
mind and matter.

But, when you look close enough,
all you have are Zeroes and Ones.

Contents

1 Introduction

2 Basics

2.1 A Core Theory of Bit-Vectors o . . e

2.2 Solving Bit-Vector Equations
2.2.1 Canonizing Bit-Vector Terms o
2.2.2 The Function called Solver
2.2.3 Solving Fixed-Sized Bit-Vector Equations

2.3 EXtensions e e e
2.3.1 Syntactic Sugar Lo
2.3.2 Bit-Wise Boolean Operations e
2.3.3 Arithmetic L
2.3.4 Variable Extraction oL
2.3.5 Variable Width
2.3.6 A Classification of Extensions L

2.4 Bit-Vectors of Unknown Width0
2.4.1 The Standard Method: Everything is a Number
2.4.2 One Domain: Dense Encoding
2.4.3 Bit-Vectors and Naturals: A Hybrid System
244 Whatis Best?
2.4.5 A More General Solver: Frame Solver

2.5 The Expressiveness of Solving
2.5.1 Verbose Solvers
2.5.2 Solvers and Quantification Lo
2.5.3 Solving BV@,bvecn is PSPACE-hard

On Decidability

3.1 Where the Problems are
3.1.1 Considering an Exampleo

3.2 The Theory with Variable Length and Only Concatenation
3.2.1 Term Representation via Context Sensitive Grammars
3.22 An Example e
3.2.3 L=, isnot Context Freeo oo
3.2.4 An Interpretation of this Result
3.25 L=,y is Decidableo oo oo

3.3 An Unsolvable Problem e
3.3.1 Turing Machines (cf. [Sch92al])
3.3.2 Encodings of Computations e
3.3.3 The Non-Existence Theorem

CONTENTS

3.4 Semaphore e e e
4 Solving Fixed-Sized Bit-Vector Equations
4.1 Solving Bit-Vector Equations via Monadic Logic
4.1.1 In the Domain of WSIS e
4.1.2 Encoding Fixed-Sized Bit-Vector Equations in WS1S
4.1.3 From Bit-Vector Equations to Finite Automata
4.1.4 Constructing Solutions from Automata
4.1.5 A Short Glimpse at the Complexity
4.1.6 Run-Time Experiments e
4.1.7 Extension to Larger Theories?
4.1.8 Semaphore
4.2 Solving via an Equational Transformation System
4.2.1 Equational Transformation Systems
4.2.2 A Simple Strategy: Reduced Chopper
4.2.3 Run-Time Experiments with Cx
424 Semaphore
4.3 The Operationalization: Fixed Solver
4.3.1 The Algorithm in an Overview
4.3.2 Phasel: Slicing
4.3.3 Phase2: Chunk-Solve e
4.3.4 Phase3: Blocking
4.3.5 Phase4: Coarsest Slicing
4.3.6 Phaseb: Propagation e
4.3.7 Phase6: Recombination
4.3.8 Run Time Experiments
4.4 Introducing Heuristics for the Fixed Solver
4.4.1 The Pigeon Hole Principle
4.4.2 Expressing Pigeon Hole in the Bit-Vector Theory
4.4.3 The Idea: OBDD Melting o i i e
4.4.4 Refinement of the Heuristic
4.5 Looking Back at Fixed Size Lo
5 Beyond Fixed Size
5.1 A Solver for Variable Width: Split-Chop
5.1.1 Reasoning about Integers
5.1.2 Splitting Context: The Solver Split-Chop
5.1.3 The Context Split Rule
5.1.4 Experiments e e
5.2 Semaphore e e e e

6 Conclusion

A Former Results at the SRI
A1 An NP-complete Problem
A.2 An NP-hard Problem e e e
A.3 An Unsolvable Problem e e

B Complexity Theory
B.1 3CNF-TQBF is PSPACE-complete ittt et e
B.2 BVg [;,;-Solvability is NP-complete

37

38
38
38
39
40
41
42
43
47
47
47
48
48
50
o1
52
92
92
92
99
99
39
96
96
60
60
60
61
63
64

65
65
65
66
68
69
69

70

CONTENTS

C Source Codes

C.1 Solve via Mona

C.2 Fixed Solver

Chapter 1

Introduction

The pure and simple truth
is rarely pure and never simple.

(Oscar Wilde)

Solving equations is a task as old as math itself. The concepts of generating solutions for arithmetic terms,
for example, are well understood and operationalized in the sense that they can be executed on computing
devices. This thesis is dedicated to the automation of solving an equational theory that is less popular but
highly interesting in the realm of computer science, namely the theory of bit-vectors.

A Bit-Vector is a Bit-Vector

As the name suggests, bit-vectors are but a special case of common array-like data-structures. However,
operations on bit-vectors like concatenation and extraction of contiguous parts are untypical for vectors
and rather remind one of strings. Furthermore, the property of a binary alphabet not only limits the
expressiveness but also offers a characteristic that can be utilized.

Of course, bit-vectors can be encoded by means of arrays, strings or natural numbers. In this thesis it
is claimed, however, that these approaches water down the interesting peculiarities of bit-vector terms that
are starting points for solving bit-vector equations.

Solving Equations in Hardware Verification

From an abstract point of view, solving of equations just makes the information contained more explicit.
If the equation is trivial or unsatisfiable solving yields true or false respectively; otherwise, an equivalent
solved system of equations is computed.

In the context of hardware verification, efficient mechanization of solving is required in order to process
complex and tedious proofs. Here, formulae do seldom involve only statements about bit-vectors but are
rather a conglomerate of various theories like natural numbers, lists and bit-vectors. This motivates the idea
to embed solver algorithms for numerous theories in a capacious framework.

Deciding Combinations of Quantifier-Free Theories

A prominent approach for deciding the combination of theories is presented by Shostak [Sho84]. The
key to his algorithm is the computation of the congruence closure of a binary relation on a finite labeled
graph [Gal87]. Here, a relation is called congruent, if it is both an equivalence relation and backward closed.
This means informally that the congruence of two nodes follows from the congruence of all the (ordered)
successor nodes. By means of this technique, simplifiers for individual unquantified first-order theories are
merged into a single procedure.

CHAPTER 1. INTRODUCTION 7

In addition, Shostak’s method requires that each distinct theory has the property of algebraic solvability. A
theory is algebraically solvable if there exists a computable function solve, that takes an equation s = ¢ and
returns either true, false, or an equivalent conjunction of equations of the form x; = t;, where the z;’s are
distinct variables of ¢ that do not occur in any of the ¢;’s.

The Relevance of this Thesis

Although bit-vectors are a fundamental data structure, apparently they have not attained proper attention
in the past. In particular, the characteristics of the theory of bit-vectors are widely neglected and an
efficient concept for solving bit-vector equations has not yet been etablished. In industrial sized applications
like the formal verification of the AAMPS5 microprocessor by Miller and Srivas [MS95], a lack of efficient
automatization proved to be a major bottelneck.

This thesis investigates the problem of solving bit-vector equations both from a theoretical and practical
side. Complexity and decidability of bit-vector theories including concatenation, extraction, bit-wise boolean
operations and arithmetic are observed. Boolean operations on are introduced by means of ordered binary
decision diagrams, which also provide a conceptually clean way to encode arithmetic. Generalizations that
allow the width of bit-vector variables to be unknown are discussed as well. Surprisingly, extensions that
maintain the fixed size lead to theories that are releated in the way, that for all of them the word problem is
N P-complete. As expected, far reaching extention of the bit-vector theory leads neccessarily to the incom-
pleteness of any solver algorithm. A proof is obtained by reduction of the halting problem. Furthermore, a
more accurate characterization of the expressiveness of solving is developed. In general, solving algorithms
can be utilized to decide quantified equations, which is made explicit in the Quantification Lemma 2.9.

On the practical side, several approaches for solving bit-vector theories are explored in this thesis. The task
of solving fixed-sized equations is performed by means of a translation to weak second order monadic logic,
an equational transformation system and an operationalized and efficient version of the latter, supported
by heuristics. These approaches are corroborated by implementations and run-time experiments. Finally,
a general concept for solving bit-vector equations with variable width is given. The algorithms prsented
in this thesis have all been implemented and can be obtained at the Bit-Vector Research Page in Ulm:

http://www.informatik.uni-ulm.de/ki/Bitvector/index.html

Overview

The thesis is organized as follows. Chapter 2 includes a formal definition for the theory of bit-vectors together
with a canonizer and solver. Extensions are introduced and an inspection of the complexity increase is given.
In chapter 3 decidability of expressive bit-vector theories is discussed, culminating in the proof that a solver
for a rather general theory cannot exist. In chapter 4, three approaches for solving fixed-sized bit-vector
equations are treated and compared according to run-time performance. An intuitive extension to variable
width is presented in chapter 5.

Acknowledgements

The author would like to express his gratitude to F.W. von Henke, J. Rushby and Harald Rue. Without
their kind support and Harald’s nagging questions, this work on reasoning about bit-vectors would not have
taken place.

Chapter 2

Basics

The point of philosophy is to start with something so
simple as not to seem worth stating, and to end with
something so paradozical that no one will believe it.

(Bertrand Russell, The Philosophy of Logical Atomism)

In this chapter an equational theory of fixed-sized bit-vectors including only concatenation and extraction
operations, the so-called core theory, is defined. Then, a canonizer and a simple solver for the core theory
is presented. Finally, extensions of the core theory to bitwise boolean operations, arithmetic and variable
extraction and width are discussed.

2.1 A Core Theory of Bit-Vectors

This section develops an equational theory for the fixed-sized bit-vectors of width n. Hereby the width
n is constrained to be a positive natural number, since bit-vectors of width 0 are excluded. The bits of a
bit-vector of width n are indexed from left to right, starting with index 0. In the following, n, m,p, ... denote
valid widths of bit-vectors. The bit-vector theory contains constants cp,) of width n, concatenation t@u of
bit-vectors ¢ and u, and extraction t[j : i], where 7, j € IN, of i — j +1 many bits j through ¢ from bit-vector ¢.

These considerations lead to a many-sorted signature (see, for example, [Gal87]) with infinitely many sort
symbols bvec,, n € INT.

Definition 2.1 Let X 1.4) be the signature
Somy = ({bvecaln € NTY,
{cln € N*,0< ¢ <2"}U

{. ®um Jn,m e N*T}U
{{[j:illne NTAi,jEe NAOLj<i<n})

such that for appropriate n, ¢, and j:

Cmp — bvecy
. Onm - bvec, X bvecy, = bvec,
i), bvecn, — bveci—jiq

CHAPTER 2. BASICS 9

The dots to the left and to the right of function symbols indicate the use of infix notation. Extraction is
assumed to bind stronger than concatenation. In the following, T[], Y[m], 2[p,--- denote variables of sort
bvec,, bvecy,, and bvec, respectively. The set of well-formed bit-vector terms is defined in the usual way and
t[n]> Uim]» Vp), - - - denote bit-vector terms of respective widths. Subscripts are omitted whenever possible and
can be inferred from the context. Moreover, ¢ =u denotes syntactic equality of terms ¢ and u, and vars(t)
denotes the set of variables in .

A bit-vector term t is called atomic if it is a variable or a constant, and simple terms are either atomic
or of the form x,[j : 7] where z,) is a variable and at least one of the inequalities i # n — 1, j # 0 holds.
Moreover, terms of the form ¢; ®t2® . .. ®t;, (modulo associativity), where ¢; are all simple, are referred to as
being in concatenation normal form. If, in addition, none of the neighboring simple terms denote constants
and a simple term of the form z[j : 7] is not followed by a simple term of the form z[i + 1 : k], then a term
in concatenation normal form is called mazimally connected.

Definition 2.2 The core theory of bit-vectors with concatenation and extraction is denoted by BV, 1.1
Let ¥ 1.1 be the signature from Definition 2.1; then equational properties of BV, 1,.1) are given by the
(conditional) X, r1.1j-equalities

1) (t[n]®u m])[] i = tn] [§:1] Ir0<j<i<n

2) (tp@up)li 1] = upmlj —n:i—n] Irn<j<i<m+n
3) (t[n]®U[m])[i = t[n][_] n— 1]®U[m][ti—n] Irj<n<i<m+n
4) t[n][n— 1] = t[n]

5) n] [k Jj— 1]®t n][] = t[n] [k]

6) (tn)) DV =)@ (W) D))

7) t[n][’L][l k‘] = t[n] [l +7:k+]]

J

Note that well-formedness of bit-vector terms implies that 0 < k < j < i < ninequation5) and0 <1 <k <n
A0 <1 <k<i-—jin equation 7) above. Semantic entailment |= in the equational theory above is defined
in the usual way.

Fixed-sized bit-vectors of width n can be interpreted as finite functions with domain [0..n) and
codomain {0,1}:

¢ = Az :[0.n). (¢ DIV 2") MOD?2
S @t = Az i [0.n+4+m). IF 2 <n THEN sp,)(z) ELSE t[y)(z —n)
spmpld 14 = Az :[0.i—j+ 1) spy(z+)

with appropriate i and j. Sometimes we also use the notation x[,)(i) in order to refer to the i™ bit “0”
or “1”. Finally, concatenations of “1”s are abbreviated by -1p,;, which reminds of the correct notation

(2" 1)[n]

2.2 Solving Bit-Vector Equations

Throughout this thesis, solving is understood in terms of matching the requirements of Shostak’s framework of
combining decision procedures, as applied in proof assistance systems like EHDM [Com93] and PVS [ORS92].
Here, two distinct functions for each equational theory have to be implemented, which are called canonizer
and solver. This demand is satisfied in this section by presenting a canonizer for the core theory and also a
simple though not efficient solver. Their properties are made explicit in the following.

#In related work, sometimes the notation 1, is found. However, this could lead to confusions.

CHAPTER 2. BASICS 10

2.2.1 Canonizing Bit-Vector Terms

Informally, a canonizer transforms terms of some ground equational theory 7" into an equivalent and well-
defined canonical form. In case of BV 1.1}, this is the maximally connected form.

Lemma 2.1:

The algorithm in Figure 2.1 yields a maximally connected form.
Proof: Sub-procedure a dissolves encapsulated structures. This results in a concatenation of simple
terms and extractions like z[,,)[0 : n-1] are simplified to x[,). The sub-procedure 3 combines all simple terms

standing abreast, if they are attachable. For example, t(y[k : j — 1]®t[,[j : 0] is attached to tpy[k : i]. Thus,
the result of o a is maximally connected. 0

Theorem 2.2: [Properties of the Solver]
Let Tiw [1.1) denotes the set of well-formed terms in the core theory of bit-vectors. The procedure

o displayed in Figure 2.1 fulfills the following properties:

An equation ¢ = u in the theory is valid iff o(t) = o (u)

Ift ¢ T .1 then o(t) =t

o(a(t)) =o(t)

Ifo(t)=f(t1,...,tn) foraterm ¢t € T, then o(t;)=t; for 1 <i<n
vars(o(t)) C vars(t)

A A e

Proof: By inspection and Lemma 2.1. 0

Therefore, o fulfills the requirements on canonizers as stated in [CLS96] to allow integration in Shostak’s
framework. It has been shown in [CMR96], that the worst-time complexity of o is O(|s| - logn + nlogn).

Note: In the American speech area, the separation of the technical terms canonization and normalization
is sometimes a bit sloppy. In this thesis a canonical form is understood as the unique representation of a
term (see 1.), whereas normalization only transforms to a well-defined form without necessarily providing
this property. For example, z[g)[1 : 3]@z[g)[4 : 5] is in concatenation normal form. But the corresponding
canonical term is also maximally connected, namely z[g)[1 : 5].

2.2.2 The Function called Solver

A solver for an algebraic theory T transforms equations in this theory into a more explicit form. In extreme
cases, it returns true or false namely if the equation is valid or unsatisfiable. Otherwise, the solver returns
a representation of all satisfying models, which is not neccessarily unique.

2.2.3 Solving Fixed-Sized Bit-Vector Equations

The simplest approach for solving bit-vector equations involves bit-wise splitting. A bit-vector equation
t[n] = U[n], Where t[,) and u[,) are maximally connected, can be understood as a collection of equations on
bits:

CHAPTER 2. BASICS 11

a(s) := CASES s OF

tou — at)®a(u)
tn] [0:n-1] — a(t[n])
ti:ill: k] = a(tll+j:k+7)])
(t@up)li 1] — IF i <n THEN a(ty[j : i)

ELseir n < j THEN a(upy[j-n : i-n])
ELSE a(t[n[j : n-1])®@a(upy, [0 : i-n])

ENDIF
ENDCASES

B(s) := Cases s OF

@ m@u = B((c+2"- c’)[n+m]®u)
Cn®u = @06 (u)
rpli i@zl + 1 klou = Bla(zyli: k)ou)
Ty [[] : z]] Qu = Ty [[] : z]] ®06(u)

OTHERWISE s
ENDCASES

Figure 2.1: A Canonizer for Computing the Maximally Connected Form

The bit-vectors t[,,; and uy,) are dissolved to their bits t,,1[0 : 0], ¢fy[1 : 1] ... wp,[n-1:n-1]. These bits are
either constants or extractions of width one on bit-vector variables.

Each splinter of a bit-vector variable is treated like a simple boolean variable. Thus n equations in
the boolean realm are obtained that can be propagated one by one. A pseudo code representation of this
algorithm is given in Figure 2.2. In this form, it runs in worst-time complexity O(n*), due to the FOREACH -
selection in line 8.

Theorem 2.3:

Let E:= s(e), t; denote terms in the core theory BVg . and z; represent original variables.
The solver s in Figure 2.2 fulfils the following properties:

l.Fe & s(e) is in the theory
2. E € {true,false} or E= \xz; =t;

3. If e contains no variables, then E € {true, false}
4. If E= A z; =t;, then the following holds:

(a) z; € vars(e)

(b) for alld,j: x; ¢ vars(t;)
(c) foralld,j: = # x;

(d) foralli: o(t;) =0o(t;)

Proof: By inspection.

CHAPTER 2. BASICS 12

naive-solve(t, éu[n]) =

V= vars(t},)) U vars(upy))
FOREACH i € {0,...,n — 1} DO E;j := {a(ty,[i : i]), a(upy[i : i])} OD
E .= {El,...,Enfl}
WHILE Ji,j: i #j: E;NE; #0 Do

E,:=F;U Ej

E:=E\E;, Op
FOREACH E; € E DO r:= IF ¢ € By THEN ¢

ELSE vpyli 1] €Ecnoosk Ei

EnxDIF OD
r(pli @] s vp €V) i= I 3E;. vpyli:il € E; THEN 71
ELSE Ulm) [l : Z]
ENDIF

CASE dE; : 0[1] € E; A 1[1] € EF; = RETURN false
VE;€ E:|E;]=1 = RETURN true

m-1
EiLse = RETURN { Ulm] = X T(U[m] [i : Z'])‘U[m] eV }

ENDCASE

Figure 2.2: A Simple Solver for the Core Theory

These properties match the requirements of Shostak’s framework (cf. [CLS96]). A result in this format is
referred to as being in solved form. The core theory has the beautiful feature of being convez, i.e. any most
general solution can be expressed by a conjunction of equations. This property is lost while extension to
variable width and therefore the notion of solving has to be extended as well. This is treated in section 2.4.5.

2.3 Extensions

In this section the core theory is extended to include operations like bit-wise boolean operations and arith-
metic and also permit variable extraction and unknown width, though the latter is treated more explicitly
in section 2.4. For each extension an appropriate generalization of the canonical form is discussed. First,
some syntactic sugar is introduced.

2.3.1 Syntactic Sugar

The following extensions of the core theory do not enlarge the syntactic power of the core theory, for they
can be completely expressed by means of concatenation and extraction.

CHAPTER 2. BASICS 13

Definition 2.3: [Syntactic Sugar]

fill,(b: Bit) = (b- (2%1)){ |
repeat(ty,;,m) = IFm=1 THEN
ELSE tp,) ® repeat(t},), m-1)
ExDIF
ext(t[n],) = IF n|l THEN t[n]l/n
ELSE t,)" TV "®t,[0: (1 MOD n) —1]
ENDIF
Shift(t[n] ,m) = O[m]®t[n]

rotateleft(t[,,, m) tn)[0 2 n-m-1] @ tp,)[n-m : n-1]

rotateright(t[n],m) =t [m:n-1]® tn) [0: m-1]
1

The fill operator iterates some bit n times. If the bit is fixed, these expressions are canonized to 0f, and
-1y, respectively. ~ The more flexible operation repeat denotes the concatenation of the same bit-vector
finitely often. Like in regular expressions, this is marked by an exponent, like t[n]B = U[n) @[@[] A more
general form of this repeat is the extension of a bit-vector term to a fixed length by iteration up to the
desired point as defined in [BP98]. The shift operation adds some padding with zeroes, usually up front. A
shift(t[,),m) is equivalent to 0, ®?[,). Similar are rotations to the left or the right that push overflowing
bits back to the beginning. A rotateleft(xg),2), for example, results in x,[0 : 5]®x,[6 : 7).

For these notations have an equivalent, more basic representation in the core theory, they are treated as
macros. During canonization, they are unfolded to their right hand side in Definition 2.3.

2.3.2 Bit-Wise Boolean Operations

[{Pl)

A boolean connective “o” applied on bit-vector terms is understood as the bit-wise application of this
operation.

Definition 2.4
Sin) Ot = (S[n] [0:0] o tn) [0: 0])® i ®(5[n] [n-1:n-1] o tn) [n-1: n—l])

Well-formedness requires that the arguments of boolean operations are bit-vector terms of equal width.

Canonization via OBDDs

In order to obtain a canonical form of boolean bit-vector terms, the notion of ordered binary decision diagrams
(OBDDs) [Bry92] is introduced. These structures are also known as one-time only branching programs, where
the set of node variables are visited in a fixed (though arbitrary) order (cf. [vL90a, p.796ff]).

Definition 2.5 A bit-vector OBDD of width n is a rooted, directed and acyclic graph where the nodes
are marked with bit-vector variables or extractions on bit-vector variables of width n. The only leaf nodes
are O] (false) and -1, (true). Each non-leaf node has exactly two successors. By convention, the edges
displayed on the right side in diagrams are called the the-edges and are followed, if the node evaluates to
true. The left edges or else-edges are followed, if the evaluation yields a false. From root to leaves, the
marks of the nodes occur according to an arbitrary but fixed order. The structure of a bit-vector OBDD is

required to be maximally shared. |

CHAPTER 2. BASICS 14

Obviously, bit-vector OBDDs can be utilized to represent all kinds of bit-wise boolean operations. The
bit-vector term x[3) A yp3), for example, is represented as

Example 2.1
x
131
Vs
\ It (.’L'[g] y ITe (y[g] y -1[3] y 0[3]) y 0[3])
O3 Rt

The ITE conditional (if-then-else) is equivalent to the graph representation on the left. The intended
meaning of such a bit-vector OBDD is the concatenation of n analogous binary functions, applied on the n
individual bits of the bit-vector variables. Thus, the OBDD in Example 2.1 is equivalent to

Example 2.2
x[3] [0:0] xm [1:1] x[3] [2:2]
¥y3;10:0) Yy [Y322

ITE (zp3[1: 1], ITE (ypz[1: 1], 1py, Opy), Opp) @

\ (%) \ (%) \ ITE (z(3[0: 0], ITE (y;3y[0: 0], 1p), Opyy), Opyp) ®
ITE (213)[2: 2], ITE (y(31[2: 2], 1y, Op1), Opp)

Oy Iy 0, 0y

A Canonical Form

Since both extraction and concatenation distribute over bit-vector OBDDs, the canonical form for the core
theory can be extended in a straight-forward way to also include boolean operations.

Definition 2.6 [Extended Canonical Form]

A bit-vector OBDD is called trivial if it is of the form ITE (¢[,), -1y, 0py)). Non-trivial bit-vector OBDDs
are simple terms. A bit-vector term uy,) is canonical, if

e none of the OBDDs in uy, is trivial

® u[, is either a simple term or a concatenation of simple terms, such that no connected simple terms
can be attached.

If no OBDDs occur, this is conform with the definition of the maximally connected form
J

The notion of simple terms is exteded to include also bit-vector OBDDs whose nodes are either bit-vector
variables or extractions on bit-vector variables. This allows an effective representation of boolean bit-vector
terms of large width while minimizing the number of introduced nodes. Trivial OBDDs ITE (t[n] s L, O[n])
are canonized to t,). The canonical form of x5 Ay(3) is given in example 2.1.

2.3.3 Arithmetic

In most hardware contexts, arithmetic modulo a rest class ring Z,, is a must. For simplicity, we restrict our
attention to addition. Following the proposed concepts, other operations can be defined straight-forward. In

CHAPTER 2. BASICS 15

order to express the connection between bit-vectors and natural numbers, the function pair bv2nat(.) and
nat2bvy () is introduced.

Definition 2.7 [Arithmetic Interpretation)]

n—1
bv2nat(t[n]) = > Ln] (i) - 2¢

i=0
nat2bvipy(¢) = (¢ MOD 2")]

where t[,):bvec,, and c:IV.

This allows to express addition +,) as a collection of infinitely many function symbols.
Definition 2.8 [Addition]
T[n] +[n] Yn] = nat2bvyy, ((bv2nat(a:[n]) + bV2nat(y[n]) MOD 2”))

J
Boolean operations bind stronger than addition. If they are provided, subtraction can be introduced by
means of a derived macro operation. In particular it is sufficient to define a “negative” number via the
(n-1)-complement:

Definition 2.9 [Unary Minus]
~T[n] = (0] Fn] L)
J
This is consistent with our declaration of -1, in section 2.1, since the (n-1)-complement of -1 is a
concatenation of n “1”s.

The Canonization Problem

Whenever the theory includes concatenation, extractions or boolean operations as well, the addition
operation leads to canonization problems. For example, the following terms on the left hand side are
equivalent to their right hand side counterpart, but there does not seem to be an intuitive criterion on
which representation is to be called canonical:

Example 2.3
zig s = Op®g[0: 6]
(s +12) 12 7] = @i[L 2 Ty
vtz = (2 XOR yp) XOR 0) ® (212[0 : 0] Ayg[0 2 0])

Canonization is one of the requirements for embedding various theories into Shostak’s framework of congru-
ence closure. So either the task of canonizing has to be solved or the framework has to be enlarged to a
more general one. To the best of my knowledge, neither of this has been solved yet in a way resulting in
reasonable run-time (cf. also [BP98]).

In the approach described below a canonical form is defined, thus solving the canonization problem.
However, the cost—in terms of computation time—is rather high.

Arithmetic via OBDDs

Due to the finite domain, any arithmetic operation can be expressed by means of Boolean functions and
consequently via OBDDs. The idea here is to split up the arguments into a concatenation of bits and
compute a concatenation of OBDDs incrementally. If the operation is an addition, a ripple-carry adder
describes the applied boolean functionality precisely.

CHAPTER 2. BASICS 16

Unfortunately, in many practical cases the OBDDs grow quite large as a consequence, for the number of
“input bits” at a position grows with the width of the operation. For example, the term z[5+2y[2) canonizes
to

Example 2.4
X, [0:Q] X, [1:1]
Yy [0:0] Yy [0:0] ® X, [0:0] X, [0:0]
Oy 1y Y [L1:1] Y [1:1] Yy [1:1]

Yy [1:1]

Y2 [0:0]

q11 -1 m

The term order applied here is zy)[1: 1] < 2(3)[0 : 0] < yj3y[1 : 1] < y[21[0 : 0]. As observed frequently, the
size of the OBDDs is heavily dependent on the choice of this order. In fact, this order is a rather bad one.
The canonization of terms x[,)+ [y}, uses the following resources:

n 1 2 3 4 5 6 7 8 9 10
#Nodes at [n-1] 5 11 25 35 117 243 497 1007 2029 4075
#Nodes built 7 24 61 138 295 612 1249 2526 5083 10200
time used [s]” 0.009 | 0.04 | 0.16 | 0.715 | 3.206 | 14.668 | 63.505 | 285.50 | 1181.98 | 4856.48

The task of finding an optimal ordering is itself N P-complete (cf. [BW96]). The best order I found (for
addition) is pushing down the least significant position. For y+[2)y12) and the order zp5)[1 : 1] < yppy[1: 1] <
x[y) [0:0] < Yp2] [0:0]. For Z2)+21Y[2] this results in

Example 2.5
X, [0:0] x, [1:1]
| [% © Yo [11] Ve [1:1]
c}1] '1[1] X[2] [0:0] Y

-1

Qy

The OBDD to the right has only nine nodes (instead of eleven in Example 2.4). The advantage becomes
more significant with growing width as can be deduced from the following table.

[1

n 1 2 3 4) 6 7 8 9 10

#Nodes at [n-1] 5 9 21 33 45 o7 69 81 93 105
Nodes built 7 23 43 63 83 103 123 143 163 183
time used [s] 0.009 | 0.034 | 0.148 | 0.324 | 0.549 | 0.843 | 1.434 | 1.886 | 2.256 | 2.907

bMeasured with compiled Allegro Common Lisp 4.3, Linux on a Pentium 150MHz, 48MB of Ram.

CHAPTER 2. BASICS 17

If the operations are good natured, the construction results in small OBDDs. For example, building up
a OBDD for x[,+n2[, yields only trivial nodes. Moreover, the canonical form is well defined for all
expressions via the already introduced concepts. In the example 2.3 the OBDD representations of the right
hand sides build the canonical form.

Note: There are classes of boolean functions, where even for the optimal ordering OBDD shows a rather
bad performance. A pathological example is the hidden weight bit function (HWB):

Definition 2.10

HWB(zy,...,2y) = Tsum, where sum:=x; +---+ x, and 29 :=0 |

In [Bry91] and exponential lower bound in the number n of variables was proven. Refer to [BLW95] for a
more explanatory proof, yielding the slightly better lower bound 2°27~! for the number of OBDD nodes.

2.3.4 Variable Extraction

So far the naturals ¢ and j in an extraction [j : i] have been considered to be constants. It might be desirable
not to fix the positions where extractions apply. Then, terms like z4[i : i + 1] are allowed, where i : IN is
an integer variable. In general, type correctness leads to implicit constraints here. For example, the term
wpqli 2 i + 1] implies 0 < < 2.

Since the width of bit-vectors is still fixed, the domain these integer variables can be chosen from is finite.
Apparently, the introduction of variable extraction can be interpreted as a finite case-split on the width of
the contained terms. This results in a set of terms with fixed extractions that can be canonized and solved
via the methods described previously. However, the task of deciding whether a bit-vector equation with
variable extraction is satisfiable is IV P-complete; for a proof refer to Appendix B.2.

2.3.5 Variable Width

In contrast to the extensions above, allowing variable width on bit-vector variables is a critical step. Formally,
this can be achieved via introducing dependent types bvec, where n is an integer variable, z[,) : bvecy.
This degree of freedom stipulates the solution approaches more than slightly and is discussed in detail in
section 2.4.

2.3.6 A Classification of Extensions

The extensions discussed above are not isomorphic in the sense that terms from one extension can not be
translated into an equivalent term in another one not being a superset in general. Thus, boolean operations,
arithmetic, variable extraction and variable width generate a palette of different theories. The overall picture
is sketched in Figure 2.3. The criteria used (here) to measure the “difficulty” of a theory is the complexity
class of the language containing but solvable equations. More precisely, given a theory T of bit-vectors, this
language is defined as

LE ., :={t=u|t,u € T, there exists an assignment o on vars(t) U vars(u) with o =t =u}

The complexity class of the language L;‘F:u is stated in square brackets. Figure 2.3 is also anticipating some
later results and refers to an extended counting theory that is defined in Appendix A.3 under the abbreviation
ABV},. The N P-hardness of the bit-vector theory only with composition and variable width is shown in
Appendix A.2 (it is still open whether it is in NP) and the undecidability of the core theory with variable
extraction, arithmetic, boolean operations and variable width is treated in section 3.3. The remaining proof
of the N P-completeness of the topmost theory within the grey area is given here.

CHAPTER 2. BASICS 18
Extended Counting Core Theory
Theory + variable Extraction
- + Arithmetic
[undecidable] + Boolean Operations
variable Width
[undecidable]
only composition
variable Width
\ Core Theory
i [NP-hard] + variable Extraction
l + Arithmetic
S Lo + Boolean Operations
| ?
L ___ [NP-complete]
Core Theory Core Theory Core Theory
+ variable Extraction + variable Extraction + Arithmetic
+ Arithmetic + Boolean Operations + Boolean Operations
[NP-complete] [NP-complete] [NP-complete]
only composition
variable Width Core Theory Core Theory Core Theory
but with upper bound + variable Extraction + Arithmetic + Boolean Operations
[NP-complete] [NP-complete] [NP-complete] [NP-complete]
Core Theory
[inP

only composition

[inP]

without extraction with extraction

Figure 2.3: Overview on Extensions and Complexity

Theorem 2.4:

Let BV, 1;.51,+,Abe the theory of fixed-sized bit-vectors with variable extraction, arithmetic and
boolean operations. Then the language

E%Q[f:j]7+’A = {t =ult,u € BVg [;.jj 1+ A there exists an a on vars(t) U vars(u) with a [zt =u}

is N P-complete.
Proof: Since the theory is fixed-sized, any possible assignment to variables in ¢ and u can be guessed in
polynomial time (the length information is assumed to be given unary). Checking equality of fully interpreted

terms is polynomial, thus E%’Li:j]’+’/\ € NP.

The N P-hardness follows from the N P-hardness of the sub-theory BV 1i:j) as shown in appendix B.2. O

CHAPTER 2. BASICS 19

It is surprising, that the complexity of the resulting theories builds an area of N P-complete problems
(underlayed grey in the picture) rather than a cascade.

2.4 Bit-Vectors of Unknown Width

If we do not restrict the width of bit-vector variables, the notion of a solver has to be extended. Three
methods are presented and the drawbacks and advantages of each are discussed briefly. Finally, a formalism
called frame solving according that follows the idea of the third method is defined.

2.4.1 The Standard Method: Everything is a Number

The simplest approach of dealing with bit-vector equation of variable width is to express everything via
natural numbers. More precisely, the bit-vector terms are translated into natural number terms including
the operations _+ _, _ -2-, _DIV2- and - MOD2-. Additionally, some side constraints in form of equations
and inequalities arise. The transformation can be sketched as follows:

Tp) — X, x < 2"
T @Ym] = Tn] - 2"+ Y
Cﬂ[n][j i — (Cﬂ[n] M0D2j+1)DIV2i, 0<3<i<n
where the inequalities on the right are additional constraints. In this way a rich set of state-
ments concerning natural numbers can be encoded. Let in the following z,y be variables we want

to apply constraints on, let further a,b,c,d be auxiliary variables we are not interested in and
[,m,n be position variables. Then statements of the following form can be generated alongside:

RN
({) z-2=y-2" via 2%?3 g gg]oil]) g ZSZ .

@ s 20 DR D T

o et S D D e
(v) x Cpre Y VIA 2%153 g yiﬁ)i] L

IR R A

The symbols Cpre and Cg,j, denote an unstrict prefix and substring relation respectively. Note that the
leftmost position is viewed as the first one.

The advantage of this approach is that the original problem is transferred into a well-known field, the
natural numbers (with modulo arithmetic). On the other hand, there are also mayor drawbacks. Deciding
natural numbers with non-linear constraints and modulo arithmetic is a difficult and expensive task, at least
in general. Moreover, the characteristic properties of bit-vector equations become hard to exploit. The
following paragraph explains that the fundamental difference between positions and values is rather watered
down than lost.

CHAPTER 2. BASICS 20

There are Two Classes of Variables

The transformation to equations and inequalities over IN does not entirely yield a untyped logic. E.G. it is
clear from construction, that there are only special kinds of terms that are put up into the exponent. In fact,
two categories of integer terms that can be distinguished: terms denoting the “content” or value of bit-vectors,
further referred to as (Value Term) and terms denoting position or width, denoted by (Position Term).
Consequently, a signature can be given as follows:

Yn:=({ (Value Term), (Position Term) },

{ cy : — (Value Term),
-+v - : (Value Term) x (Value Term) — (Value Termy),
cp : — (Position Term),
—+p- : (Position Term) x (Position Term) — (Position Term),
_-2- : (Value Term) x (Position Term) — (Value Term),
_MOD2- : (Value Term) x (Position Term) — (Value Term),
_DIV2- : (Value Term) x (Position Term) — (Value Term))

The fact that this distinction can be maintained, suggests that the theory of natural numbers is too powerful
to express properties of bit-vectors tightly. For example, though an operation _ - 2- exists, there can not
be constraints like z - 2% = 8.

2.4.2 One Domain: Dense Encoding

There is no conceptual reason, why length and content of a bit-vector should be distinguished. The following
approach defines a one-to-one correspondence of bit-vectors of variable width to natural numbers. However,
it is necessary to apply a non-standard encoding in order to achieve this.

Counting Strings
Let ¥ = {0,1} be an alphabet. Then it is well-known that ¥* can be enumerated lexicographically:
¢ = {e, 0, 1, 00, 01, 10, 11, 000, ...}

This enumeration yields an isomorphism 7 from ¥* to natural numbers:

N|jOo|1|23 |4 |56 7|89 |10|11 |12 | 13| 14 | 15| 16 | 17 | 18
¥*|e|(0]|1]00|01|10] 11000 |001|010 |011 | 100|101 |110| 111|000 | 001 | 010|011

Think of n € IV as generated by an infinite row

o0
n=> ¢-2 (2.1)
i=0
where the coefficients ¢; € {0,1,2}. The set {¢;}52, is not a unique representation of n, however a extraneous
condition guarantees uniqueness:
AN : (Vi< N:¢;#0) A (Vi>N:¢;=0) (2.2)

This N is exactly the width of the intended bit-vector and the coefficients 1 and 2 stand for the bits “0”
and “1” respectively. As a result of this observation, both and ™' can be computed efficiently, a simple
algorithm is given as follows.

CHAPTER 2. BASICS 21

n(zo - xm) = IF(m<0)THEN 0
ELsE 2-n(xy - -zm) + 20+ 1
ENDIF
n~t(z?) = TIF (z® =0) THEN €
D
ELSE IF even(z?) THEN 1 ® (n~1(L52))
Eise Oy @ (= (252))
ENDIF
ENDIF

For {0,1}* is an intuitive description for the set of bit-vectors with finite but unrestricted size, the related
natural number is a valid encoding of a bit-vector. This is called a dense encoding. In the following z”
denotes a dense encoding of a bit-vector x[,,).© Obviously, there is a tight connection between the width of
a bit-vector and its dense encoding.

Definition 2.11
width(z?) = |log, (2 + 1)
[2P] := 2lios- (zP+1)]

Dense Encoding and Bit-Vector Terms

A remarkable property of this encoding is that many bit-vector terms can be processed in a straight forward
way. A concatenation, for example, results in a sum of its components, the rightmost term multiplied with
an offset that is a potential of 2 (cf. equation 2.1). The coherence can be expressed as follows.

Lemma 2.5:

L n@m®ym) = n@m) + n@m)] - n(ym)
(n(z,) MOD (2742 — 1)) DIV 27

2. n(@ply:d])
3. [z°] = 2W1'dth(xD)

4. JaPey”l = [z”1-Ty"1

Proof: By inspection. O
The fact that dense encoding is possible demonstrates, that there are no inherent two types of integer terms
and that the information of length and content can be combined to one data. On the other hand, dense
encoding does not appear to be qualified as an encoding of bit-vectors for the following reasons. First, it
does not avoid all type check constraints: extraction with natural numbers still leads to constraints like
i < width(z®). Second, the processing of boolean operations becomes extremely difficult, for the resulting
functions are quite unintuitive. Moreover, if there is composition or variable extraction contained in the bit-
vector equation, the terms on natural numbers are not linear. Thus the existence of an efficient algorithm
to process them is doubtful.

¢This is just to avoid confusion; of course, £ is a natural number and all operations defined in IN are defined on z? as
usual.

CHAPTER 2. BASICS 22

2.4.3 Bit-Vectors and Naturals: A Hybrid System

The idea here is to represent unknown information (the width of a bit-vector variable) by a natural number
variable. This way, a hybrid theory is gained containing as well an infinite number of bit-vector types bvecy,
bvecs, ..., the type IN and dependent types bvec,, where n : IN is a variable.
This yields a powerful type system expressive enough to represent both concatenation and extraction oper-
ations over unknown size (the positions to be extracted might as well be variables), boolean operations and
even arithmetic. Thus, an infinite set of operations like +,) is introduced, which allows an intuitive and
well-defined notion of terms like () +[5] Y[n)-

Obviously, this concept leads to some type correctness constraints. If e.g. a term like x,)[2 : 7] is encoun-
tered, the following constraints result from the well-formedness:

()i<n-—1, (i) 2 < i, (iii) 3 < n.

Now, suppose that the equation containing x[,)[2 : 4] is satisfiable but not valid. Then these constraints
should occur explicitly in the solved form, for the equation is only satisfiable with respect to them. This
requires some processing of these equations. If an additional constraint n < 2 is given, the unsatisfiability
of the whole equation follows.

This observation motivates the desire for a simpler way to represent variable length.

2.4.4 What is Best?

None of the approaches discussed in this section is perfect; at least one of desirable properties as intuitive
encoding, easy extensibility or comfortable solving (e.g. by means of reduction to a previously solved theory)
is not given. However, since typical applications include boolean operations and parts of bit-vector terms
with fixed width, the small and beautiful approach of dense encoding is dropped here.

The crucial difference between the approaches in 2.4.1 and 2.4.3 is, that in the latter one a fundamental
distinction between bit-vectors and natural numbers is taken into account. This requires a rather complicate
processing but allows to exploit special properties of bit-vectors (like the known offset of bit-vectors with
fixed width) more efficiently. Also, a composition does not necessarily lead to non-linear constraints but
can be handled by means of case-splits, which will prove to be a more fruitful concept (see chapter 5).

Thus, the hybrid system is considered to be the most attractive one.

2.4.5 A More General Solver: Frame Solver

Consider a hybrid theory of bit-vectors of possibly unrestricted size and variable extraction. In order to
define solving for this special theory we extend the notion of a solver and solving is defined in a more general
way. This extension is motivated as follows.

Example 2.6
Tmp © Opp ® Ym) L
22 @ lpp ® wp

This equation is solvable, if either n = 1,m = 3 or n = 3, m = 1 holds, but not if n = 2, m = 2. This cannot
be expressed in a conjunction of equations. Thus, strictly speaking, no solver according to Theorem 2.2 can
exists.

What Frames Stand for

In order to allow a kind of solving in a more general context, we have to introduce something like a disjunction
of solutions. Observe that these disjunctions can only be caused by equations over integer variables. Thus,

CHAPTER 2. BASICS 23

the intuitive way to describe this disjunction is to build case-splits over special integer constraints. These
are called frames and the corresponding solving algorithm s is called frame solver.

Definition 2.12 A frame is a tuple (®, ¥) where
e & is a set of bit-vector equations of the form z;j, ;= ...,
e U is a set of constraints on natural numbers.

also required is that

none of the left hand side variables in @ is contained in a right hand side,

¥ contains only variables over Z which occur in ® as width declarations or positions in extractions,

¥ is closed according to Definition 5.1 on page 66) - in particular is ¥ satisfiable.

-

Definition 2.13 A frame solver s is a function mapping a set of bit-vector equations {Ei,..., En,} to
a set of frames {(®1,¥y),...,(Px, Ux)} where

o All variables on the left hand sides of ®,, are contained in at least one E,,, »x =1,...,k; u=1,...,m

e The U,, are pairwise disjoint, i.e. for any two W,,, U, 3 # 3, there exists no mapping from the
natural variables to IN that is a model of ¥,, and ¥,

e For all interpretations Z: Z=Ei A+ AE, ffZT=(®AT) V...V (P A D)

For the equation in Example 2.6, a frame solver could yield informally:

Example 2.7)) .
Tl] = ap]
Ym = @by {” = 1}
2[2] = a[1]®0[1] ’ m = 3 ’
[wpp = by)
T @01 ®Yim) L\ _
S| = =
221 @1 @))
T = ap®lp)
J Yo = i {”23}
2[2] = a[g] ’ m = 1
C\ L wp = Op®bp y

2.5 The Expressiveness of Solving

Solving is far more a task than just finding a solution. The fact, that a representation of all possible solutions
has to be computed can be exploited in a way to construct a decision procedure for even quantified formula.
This statement is made explicit in the following.

CHAPTER 2. BASICS 24

2.5.1 Verbose Solvers

First, the notion of a verbose solving is to be introduced for explanatory reasons. Let ¥ be an (arbitrary)
ordering of variables in a theory.

Definition 2.14 A frame solver s (cf. Definition 2.13) is called verbose [with respect to ¢ |, if it fulfills
the conditions 1.-5. in Theorem 2.2 and the additional property:
For each result E of s, if E = A x; =t; then

6. for all z; € Var: z; =t; é FE

[7. the set E is ordered according to the left hand sides with respect to 9]

In the following, a verbose solver is denoted with a hat, like §.
Property 6. might result in an surplus use of fresh variables. E.G. the result [, =y, represented as
T[n] = A[p] A Yn] = Q[pn), With a fresh variable ap,).

Lemma 2.6:

For each [frame] solver s [with respect to] there exists a verbose solver § [with respect to ¥].
Moreover, if s=O(f) then § = O(f + |Vars| - log|Vars|).

Proof: Let E:=s(t=u). If E € {true,false}, then 3§(t=u)=s(t=u). Otherwise,
E={z1=t,...,Zm =tm}. Let Vars:=vars(t) U vars(u). Then for each v; € Vars occurring in a t;,
introduce a fresh variable y;, add v; =y; to E and replace v; with y; in every ¢;. Finally, sort E according
to ¥ in time O(n + nlogn), where n = |Vars|. 0

2.5.2 Solvers and Quantification

Solvers are applied to unquantified equations over some logical theory in general. An immanent question is
how they could deal with quantified formulas. And the answer is, surprisingly, that they already do. What
serves as an example here is the TQQ BF-Problem:

Definition 2.15 Let ® :=Q1z1.Q222. - Qnx,.F(x1,...,x,) be a fully quantified boolean formula over
variables V := {z1,...,z,} where Q; € {V,3},i € {1,...,n} and F(z1,...,z,) is a n-ary boolean function
with connectives A, V and —. Then the language containing all valid expressions is denoted with

Lropr :={®| ® is a fully quantified boolean formula, = ®}
Theorem 2.7: [Pap94, p.456, Theorem 19.1]
The language Lropr is PSPAC E-complete. -

In particular, a variant of these language is of interest. A quantified boolean term & over variables
V:={z1,...,2,} is in 3-conjunctive-normal-form (3CNF), if

‘Pinl‘l. T ann-(lll \/l12 \/113) VARERVA (lml Vlm2 Vlmg) where l” S VUV, 1=]., ey, _] =]., 2, 3, Qk €
{V¥,3}, k=1,...,n. The language Lscnr-TonrF is defined as

L3cNF-TQBF = {(I>| ® is a fully quantified boolean formula in 3CNF, |= ®}.

Corollar 2.8:
£3CNF—TQBF is PSPAC E-complete.

Proof: See Appendix B.1.

CHAPTER 2. BASICS 25

Quantification - Intuitively

In order to understand the idea of the following lemma, an intuitive approach to quantification might be of
some help. As well known there are two kinds of uantors: V and 3. Think of quantification as a iterative
ssignment of the quantified variables, beginning with the leftmost quantor.
The V is inclined to express that the following statement is true no matter what you choose for the quantified
variable. In terms of a most general solution, this means that this choice is arbitrary.
As for the 3, it is only required there there is at least one assignment that results in a valid statement. This
fact is often expressed with a functional dependency, though strictly speaking, there might be multiple such
choices. This circumstance is reflected by means that, in a most general solution, one can construct a most
general term with a dependency to terms previously introduced.

The statement we are focusing on, is an equation. In the context of unification, the iterative process
described would be equivalent with the search for the most general unifier.

Lemma 2.9: [Quantification Lemmal]
Let T be an algebraic theory with equation and s be a solver for 7. Then s can be transformed
into a decision procedure for fully quantified equational terms over T'.
Moreover, if s € O(f) the decision procedure works in time O(f + |s(t = u)| - log|s(t = u)]).

Proof: Given an quantified equation Q1 1. -+ Qp Tn.t L u, where @; € {V,3}and V = {xy,...,z,} is the
set of variables occurring in ¢t and u. Let § be the verbose transformation of s with respect to the ordering
r1 <--- < x,. Then

T = tla

Tp = lIn
A term t;, i =1,...,n is called unrestricted if
e t; does not contain any constants
e ¢; does not contain any fresh variables occurring in ¢; with j <4

e t; does not contain the same fresh variable in more than one placed

Since § provides a most general form of any solution of téu, it does not apply unnecessary restrictions
in the choice of any variable. Universal quantification is equivalent with the notion of “anything” and
existential quantification with “something that can be expressed functionally” respectively.

Therefore let I := {i|Q; =V}. Then the closed formula Q; x;.- - - Q, @)t Zuis valid, if and only if for every
1 € I, t; is unrestricted.

It is clear how to extend this proof to frame solvers. 0

Consider, for example, the quantified boolean formula ® :=Vz.3y.3z.(x V y) = =2. A verbose solver § with
espect to ¢ < y < z for this theory yields a solution of the form

x = a
S(xvy=-z) = y = b
z = —aA-b

Obviously, only the choice of z is dependent on former assignments whereas the choices of = and y are
unrestricted. Therefore, all quantifications result in a valid formula except those where z is universally
quantified. In particular, ® is valid.

dThe intention here is that #; might be patterned with fresh variables for later reference, but theses patterns are not to
restrict the free eligibility of values for ¢; with respect to its type. E.G. t; = a[1j®ayy] restricts ¢; to the values Op3) or 3[2) and
prevents values 15; and 2[3)-

CHAPTER 2. BASICS 26

2.5.3 Solving BV bvec,, is PSPACFE-hard

Definition 2.16 A function g : A — B, |g(a)| polynomial in |a|, is called 2(-hard, if the following language
is ™A-hard:

Ly:={z |z is a prefix of (a,b) € A x B with g(a) = b}
In particular, g is PSPACE-hard, if PSPACE C PF%s, where P4 denotes the class of languages that
can be decided via polynomial oracle Turing machines with oracle language A. For a formal definition see
e.g. [Pap94].

J
As an application of the Quantification Lemma, a former result (Appendix A.2) is extended to the following
statement: Let BV bvec, be the theory of bit-vectors with variable size and concatenation as the only
operation.

Corollar 2.10:
Solving BV, bvec, is PSPAC E-hard.

Proof: [via Reduction of 3CNF-TQBF]

Let ®:=Q1x1. - Qnxp.F be an arbitrary quantified boolean formula over zi,...,z,. Then the matrix F'
can be encoded into a bit-vector equation f(F') according to Appendix A.2. Though f introduces several
variables, there is a one-to-one correspondence of each z; to the width of a; (z; =false iff |a;| =1 and
xzj = true iff |a;| = 2). Note that |f(F)| (and also the number of introduced variables a;, b;,c;,d;) is linear
in |F|. Thus, the result of a solver enables us to check the validity of a quantified formula

@' := Qyay.- - Qnan.3 (all other variables in f(F)). f(F)

with a polynomial overhead in |f(F')| according to the Quantification Lemma 2.9. Also, the output of
a solver s is necessarily polynomial in the number of original variables. Since ® & @, it holds that
LSCNF—TQBF € P~Ls. £30NF—TQBF is PSPACE-complete, thus PSPACE C P~

O

Chapter 3

On Decidability

Things are only impossible until they’re not.
(Jean-Luc Picard)

Nothing is impossible for the man who doesn’t have to do it himself.
(A. H. Weiler)

3.1 Where the Problems are

If we allow variable size of bit-vector variables, at first this does not seem to be a big deal. One can simply
introduce dependent types bvecy,, where n : IN. Also variable extraction of the form zp,[j : 7], where i and
j are variables as well, has an intuitive semantic. There are some type check constraints, sure, but in means
of linear algebraic terms. Moreover, if just the size is still unknown but restricted?®, it is obvious that the
whole theory remains decidable.

However, as it turns out, for unrestricted sizes n at least the intuitive approaches do not yield a positive
result. This might be demonstrated on a rather “difficult” example.

3.1.1 Considering an Example

Example 3.1

Let x : bvecy,; y, z : bvecy,, b,c : bvec;. Consider the equation
r ® y y ® c z ® b z ® 1 ® =
Yy ® =x c ® y b ® =z z ® Oy ® y

(@))] () (8)

Note that this conjunctive form serves but better readability, for the sizes of the upper and lower subterms
are known to be equal. The equation has no solution, but not for trivial reasons. Follow this train of thought:

e Sub-equation (a) holds, if there is a term a € {0,1}" with = a™ A y = a™.
e (B) implies that y has to consist of the very same bit, concatenated arbitrarily often.

e (7) implies that z has to consist of the very same bit, concatenated arbitrarily often.

#By means of that for each variable z[,] there exists a fized and known N such that n < N.

27

CHAPTER 3. ON DECIDABILITY 28

e As a consequence of the first two points, = consists of the (one) same bit as y.
e In order to satisfy (d), the positions of 1;;) and 0j;) have to be different.

o If the 1y is relatively left to Ofy), then both bits 0 and 1 have to occur in x, which is impossible
due to the previous argument.

o If the 1yy) is relatively right to Opy), then O occurs in z and 1 occurs in y. Therefore, y = 0y,,,) and
2 = -1, This leaves x no choice to be anything.

Following this example, bit-vectors are interpreted as natural numbers as seen in 2.4.1.
The equation in Example 3.1 would then be represented as

(2™ty = y-2"+z

y-2'+c c-2m+y

z-2' 40 b-2M+ 2

2.2t 4 1.2" o z-2mtl 4 0.2 4y
r<2”

y<2m

z < 2m

b<2!

c<2!

LS
I
>>>>> > >

>

\

It is clear from argumentation, that ® =py L; however, it is not obvious, if there is a calculus C' strong
enough to obtain ® - L. Note that the equations above contain non-linear algebraic terms.

To prove unsatisfiability, one can perform a case split on b and ¢. If b= 0 and ¢ =0, then ® narrows to

(x-2M 4y = y-2"+z

y -2 =
z-2 =
z-2Mtl 1.2 4 =
x < 2"

y<2m

AN oz<2m

= y=0
= z=0

SIS IS

D (p—0,=0) = S2mH 4y

>>>> >

\
Here, the first line implies 2 = 0 and the fourth line yields therefore 2 = 0, which cannot be satisfied.
The three other cases are left to the reader.

3.2 The Theory with Variable Length and Only Concatenation

The first part of this section discusses decidability of a restricted theory of bit-vectors. This enables us to
judge the “difficulty” of the problem by means of the Chomsky hierarchy. The second part presents the
actual decidability result.

Definition 3.1 Let BV bvec, be the bit-vector theory with the signature
(INU{bvec, |n :INtY,
{0 := bvecy, 1:— bveci} U {®pm @ buec, X bvecy, — bvecyim |0, m : Nt})

Here, dependent types of the form bvec,, where n is a natural variable, are allowed. B
The only predicate is equality. Since this section treats solving an equation ¢; =t by means of recognizing
languages, it is reasonable to introduce a language over {0,1, $}.

Lt1=ty) = {21828 - - - $,,8term-string | Ti,...,T,, term-string € {0,1}1}

Each solution of our equation #; =, is reflected by a word in L, —,) (and vice versa) as the x; stand for
instances of all occurring bit-vector variables and term-string is their instantiation of the pattern given in
both ¢; and .

CHAPTER 3. ON DECIDABILITY 29

3.2.1 Term Representation via Context Sensitive Grammars

The problem of solvability in BV, bvec, Can be expressed by means of a context sensitive grammar. More
precisely, given one equation ¢ =1» in BV bvec,’ it is possible to effectively generate two context sensitive

grammars Gy and Gs, such that each word w € L£L(G1) N L(G2) represents a distinct model that satisfies
t; = tz. Since we know that context sensitive languages are closed under intersection (cf. [Sch92a]), L, —,)

is still context sensitive.P

More precisely, given an equation t; =to, let V :=vars(t;) U vars(tz) = {z1,...,z,}. The construction
yields that L(G;) only contains words over the alphabet {0,1,$} of the shape

1‘1$1‘2$. l’n$ti

where i € {1,2}. The first part 2;$---$z, (referred to as the definition side) guarantees an identic
assignment of the variables in both productions and ¢; yields a matching of both terms.

Let count;(x;) be the number of occurrences of the variable z; in ¢; (j € {1,2},i € {1,...,n}). A translation
of a term t = 0bj; ®0bj2® - - - ®0bj,, omits the ®-operators and replaces

(i) each variable x; with ¥ X; where k € {1,..., count(z;)} denotes the k™ occurrence of z; (counted from
left to right),

(ii) each constant by the corresponding string over {0,1}.

An indexed translation also adds an index I; € {0,1} to every variable z; (i.e. ¥X; becomes ¥X? or ¥X})
and is denoted by translationg, .,

Also, a set Omitted; := {i |1‘l € V Az; € vars(tj)} is defined, for the non-occurring variables require a
special treatment.

The grammar contains two kinds of non-terminal symbols. The one denoted by a *X i explains as the k™
occurrence of the bit-vector variable z;, which eventually reduces to the letter | € {0,1} at the rightmost
position. The other kind, symbolic kN, is used to carry information from left to right and is referred to as
a walker. Here, N € {0,1} is the information (one bit), addressed to the recipient ¥X’. The walkers vanish
when reaching the rightmost occurrence co“”tf(i)Xﬁ.

Lemma 3.1:
Let t; = t5 be an equation in BV® bvec, with variables V := {zy,...,z,} of unknown width and

let G, :=(V},II, P;, S;) be the context sensitive grammar constructed as shown in Figure 3.1.
Then for j € {1,2}:

L(Gy) = {x18---$2,8t; |2, € {0,1}F,i=1,...,n}

Proof: For sake of readability, in the following a grammar is understood as a generation system for well
formed words.

(i) L(Gy) C{z1$-- Sz, 8¢5 |z € {0,1}F, i =1,...,n}

The production rules in (a) yields the proper shape of each resulting word. Since the right hand sides of
production rules in context sensitive grammars must not be smaller (i.e. in number of symbols) than the
left sides, the rightmost letter to which each variable transforms has to be chosen a priori (and is added as

bWe can effectively construct the grammar for L(t,=ts), €. via transforming both G1 and G2 to their correlated linear
bound automatons, then perform a series connection of both automatons and and transform the result back to an context free
grammar. However, this is purely platonic.

®With respect to better readability, the concatenation of grammar symbols is sometimes marked by a “.”.

CHAPTER 3. ON DECIDABILITY 30

Vii= {MX!|i=1,...,n, ki =0,...count;(z;),l = 1,2} U
{kf6i|i=1,...,n,ki=0,...countj(a:i)}u
{kffi|i=1,...,n, k; =0,...count;(x;)}

m:= {0,1,%}

() {S—=°X['$...§0X!n $translation, .. 1, (t;)
() {¥X?%=o0|i=1,...,n,k=0,...,count(z;)}
() {*X!=1|i=1,...,n,k=0,...,count(z;)}
d) {°X!-»>NOXtIN;|li=1,...,n,1=0,1, N=0,1}U
P = (e) {k]_fl kXESN B XL (kD) J_fi|z':1,...,n,k: ,...,count(z;), [=0,1, N=0,1}U
(f) {countz: N, .count(z:) xt_, N .count(z:) x!|j=1,...,n,1=0,1, N =0,1}U
(9) {*N;-B—B*N;|i=1,....n,k=1,...count(z;), N = 0,1, B € TUV;\{*X?F X!}}
{°X!>N -0 X!|i € Omitted;, 1 =0,1,N =0,1}U
(h) {"X!>N |i € Omitted;, | = 0,1, N = 0,1}

Figure 3.1: Context Sensitive Grammar Gj, Representing all Instances of Term ¢;

an upper right index to each variable symbol). Rules (b) and (¢) provide this final reduction.

The big goal is now to allow a simultaneous growth of each occurrence of a variable. The problem here is
to guarantee that each occurrence results in the same string. This is solved via allowing only the leftmost
occurrence of a variable to spontaneously produce a new letter (see (d)). At the same time, a walker N is
produced. It can jump over any symbol except the next occurrence of the same variable — there it results
in a production of a proper letter and the creation of a new walker (cf. (g) and (e)). If the last occurrence
of a variable is reached, the walker vanishes, see (f). If a variable z; does not occur in the term ¢;, it still
has to show up in the definition side. Since the walker rules do not allow a termination in this case, special
arbitrary production rules in (h) apply.

(ii) L(G;) 2 {@1$---Sanbt; |2 € {0,1}F, i=1,...,n}
As a short inspection reveals, the production terminates if and only if

1. Each created walker moves strictly to the right and vanishes at the last occurrence of the specific
variable, thus guaranteeing that each occurrence is replaced with the same string over {0,1},

2. The variables not occurring in ¢; use only production rules in (h).
(|

The reader may have noticed that the construction rules (b) — (h) assumes all bit-vector variables to have
unknown (and unbound) width. The variables of fixed or restricted width have to be treated as an exception.
Since the range of these is finite, each possible assignment can be added as a corresponding production rule
in (a), leading to an exponential (but still finite) blow-up. This makes further treatment of these variables
in rules (b) - (h) a surplus.

Lemma 3.2:

The Language L;,—,) := £(G1) N L(G2) is isomorphic to the set of all possible solutions of the
equation t; = to.

Proof: If a word w is in both £(G;) and £(G2), according to Lemma 3.1 the assignment of the variables
on the definition side are the same and the constructed strings match. Thus, the assignment encoded in the

CHAPTER 3. ON DECIDABILITY 31

definition side is a model for the equation t; = t».
Vice versa, if there is a assignment A with A |= t; =3, the corresponding word w can be constructed in
both grammars. O

Lemma 3.1 and Lemma 3.2 lead directly to

Theorem 3.3:

The set of solutions of any equation ¢t; =#» in ¥ can be represented via a context sensitive
language.

3.2.2 An Example

This construction is applied to the equation in Example 3.1. The terms are

t
to

m®y®y®c[1]®z®b[1]®z®1[1]®m
YRrRe@yeb)®@2z0zx00®y

For byj and c¢py; have fixed size, they are not translated to variables in the grammar but result in a case split
in the production rules in (a) and remain untouched by the indexed translation. There are three variables
x,7, z of unknown size. With respect to better readability these are translated to X,Y, Z9 and the walkers
carry an index x,y or z°. Thus, the translation yields

translation, ;, ;.)(t1) = Iyl 1yl 2yl “ep] Lzl - by 2701 .25l
translation(, 1, ;.)(t2) = W' AX ey 2y by 220 22X 0 3 Y

A complete definition of the grammar Gy = (V7,{0,1,$}, P, S1) is given in Figure 3.2. G2 is constructed
in the same way. Each of both grammars contain 32 variables and 472 rules. Note that we know from
construction that £(G1) N L£(G2) is empty.

3.2.3 L4+, is not Context Free

Theorem 3.4:
In general, the result language L£;,—,) is not context free.

Proof: =~ We can present a quite simple equation yielding a result language £(;,—,) which is not context
free. This is proven by application of the pumping lemma for context free languages. Let

t7, = 0Rz0YRz ® zR1®x
to TRYR2z00 ® Y1z

The width of each variable is unknown. The only purpose of the left part of both terms is to guarantee that
x,y,z € {0}T, whereas the right part yields that =,y and 2 are of the same size. Therefore,

L, —1,) = {0'$0'$0'$ 0710" | i =1,2,3,...}
Assuming L;,—,) is context free, from the pumping lemma follows that there exists a n such that

Yw € L, =4y, |w| >n, w=abede : Vj: w; = ablcd’e € Lt =ts)

dnstead of X1, X2 and X3 respectively.
¢Instead of 1, 2 or 3.

CHAPTER 3. ON DECIDABILITY

32

Vi:

Pli

N T S N N

OXO 1X0 2X0 0X1 1X1 _2X1
oYo, 1Y0’ 2Y0’ Oyl’ 1yl,’ 2yl’
OZO 1Z0 2Z0 0Z1 1zl 2Z1
16I7 2617 1]-"17 2TI
14,, 20, 'T,, 21,
1627 2627 1TZ; 2Tz}

S —0x 040y 060706 0$0¢ X0 .1y0.2y0.0.120.0.220.1.2X0
S =X 1§y 0g07060¢$0¢ X! . 1y0.2y0.0.120.0.220.1 2!

S —0x1g0ylg0zig 1916 .yt .2yt gz 2z g 2t

X950, 'X°—0, 2x°—0, 'X'51, X'51, 251,

0950, V00, 2v°—0, Vo1, Wisl, Yo,

07° 50, 12°—0, 22°—0, 2t =1, 21 =1, 221 -1,

0x040.0x9.10,, %X051.0x0.1 7, oxl0.0xt.1(,, Ol OXt LT,

0y0 5007014, V0107007, Oyl 007G, OV 0V T

070_50.020 .10, 9205102017, 0zl 4007 .14, 0zt 5102V 1T,

10, 1X%—50-1x°.20,, 1T, 1x°—>11x° .27, 10, 1X'—>0-1X' 20, 'T, 1X'>1-1x' 21,
10, 1Y°—0-1v? 20, 'T, 1 V0>1.1v° 27, 10, 1V —01y' 20, 'T, 1Y 51V 2T,
10, 12°50-12°20,, 11, 1201220 21, 10, 12t 012t 20, M. L2t 12t 2 T
20, 2X°50-2x°, 21, 2X°51.2X°, 20, -2X1 50 2X!, 21, 2X1 512X},

20y '2Y0—)0 '2Y0, 2Ty '2Y0—)1 '2Y0, 26y _2yl_>0 _2yl, 2]__'y _2yl_>1 _2yl,

L 27050220, 21, 22051220, 20, 272 0 2 72 20, 22051 220 YU

10, B=B-'0,|B # W°AB # X' } U {!,-B=B'1,|B # X"AB # X' }U
20, - B—B-20,|B # X°AB # %X* } U {?I,-B>B21,|B # X"AB # X }U
0, B»B-'0,|B # Y°AB # Y' } U {!I,-B»B-'1,|B # Y°AB # Y' }uU
20, B—»B-20,|B # ¥°AB # %* } U {?1,-B»B21,|B # ¥°AB # %* }U
10, -B—»B10,|B # '2°AB # 72" YU {'I.-B=B-'1.|B # Z°AB # 'Z' }u
20, -B—B-20.|B # 2°AB # 22> } U {’L.-B-»B*1.|B # 2°AB # ?2° }

Figure 3.2: Variables and Rules of G

For any n there exists

would imply

Case 1: Either b or d contain a $ symbol - then ws contains more than three $s and is therefore not

in ﬁ(tlztz) .

Case 2: Neither b nor d contain a §. If one of them is on the definition side, the condition |z| = |y| = |2|

cannot be maintained and else the translation term is not sound with the instances of the
variables; in any case, wa & L, =)

a word w in L, —,) with |w| > n; however, alone ws is not in L, —y,), since this

Therefore, the pumping lemma cannot hold in general and as a consequence L, —,) cannot be context free.

O

CHAPTER 3. ON DECIDABILITY 33

Note: This negative result is proven by exploiting the special structure of words in the result language
L(t,=t,)- However, it is clear how to enhance it on general representations of any solution language.

3.2.4 An Interpretation of this Result

By means of the construction presented, the satisfiability problem can be reduced to the emptiness problem
of languages of type 1 according to the well-known Chomsky hierarchy. Unfortunately, the emptiness prob-
lem is undecidable in general for languages of type 1 (cf. [Sch92a, p. 83]). Thus no general algorithm can be
presented that could be used as a solver.

On the other hand, the reduction is not an isomorphism, thus this result does not imply the general impos-
sibility of solving BV pye. - The author has to admit this is quite unfulfilling — however, it might give a
hint to the “difficulty” of sozfving even these restricted bit-vector equations.

3.2.5 L(;,—,) is Decidable

As a matter of fact, the problem defined in section 3.2 occurres in a number of mathematical fields in a
different shape—sufficiently disguised to prevent a unique notion of it. Mathematicians of western countries
refer to it as Lob’s problem by means of solving word equations over a free monoid (investigated by Lentin
and Schiitzenberger in 1969). In eastern countries it was referred to as Markov’s problem and in the field of
automated deduction as the string unification problem. This diversion may display both fundamentelness
and non-triviallity of this specific problem. For a more elaborate overview confer to [GHR93], unification
theory, chapter 5.

The positive result that L, —,) is decidable, derives from the decidability result for arbitrary single
equations in a free monoid G.S. Makanin presented in 1977. For a description see [Mak92]. More interesting
in our context is the result of Jaffar [Jaf90], where an algorithm for construction of all models is given.
The actual complexity class of L —,) is unknown, but known to be NP-hard [Benanav et al. 1985].
Independently, this fact was shown in 1996 by the author, confer to Appendix A.2. The actual complexity of
Makanin’s algorithm is a lot worse: It is nondeteministic double exponential in the exponent of periodicity
of a minimal solution of the equation [Jaffar, 1990].

3.3 An Unsolvable Problem

The theory of bit-vectors with variable width together with concatenation, boolean operations and vari-
able extraction is not solvable by means that a complete frame solver cannot exist. This is shown by a
transformation of the halting problem on empty tape to a quantified bit-vector term. The existence of a
solver would—together with the Quantification Lemma 2.9—yield a decision procedure for this undecidable
problem.

3.3.1 Turing Machines (cf. [Sch92a])
A deterministic Turing machine® M is a 6-tuple
M =(S,%,4,s0,00,s7)
where
e S is a finite set of states
e Y is the alphabet

¢ §:SxYX = SxX¥x{L, R N} is the transition function

fThe applied restrictions are without loss of generality.

CHAPTER 3. ON DECIDABILITY 34

e 59 € S is the initial state
e [] € X is the blank symbol
e st is the (only) accepting terminal state

A configuration is a tuple (s,p,q) where s € S and p € ¥*, ¢ € ¥T. Intuitively, at this point of time the
Turing machine is in the internal state s and the read/write-head is right of p and on the first symbol of g.
The tape is considered infinite to both sides, i.e. left from p and right from ¢ there are but blanks.

The binary relation - (“computes to”) is defined as follows:

(s',a1+-+ay,dby -+ by) if 6(s,b1)=(s",d,N)
(s,a1 - ap, by by) B (a1 a—1,audby - - b)) if (s, 1) = (s',d, L)
(Slaal"'aldab2"'bm) lf 5(8761):(817d7R)

Together with two special cases

(s,e,b1---by) F (s',e,0dby---by,) if 6(s,b1)=(s",d,L)
(s,a1---a,by) F (s a1 ayd,0) if 40(s,b1)=(s",d,R)

Intuitively, if the available tape is exceeded, some blanks are supplied.

An accepting computation on x is a finite string ko$k1$ - - - $k,, where each k; is a configuration, ko = (so, €, x),
k‘n = (ST,E,D) and Vi € {0, .,n = 1} k‘l F ki+1-

Theorem 3.5:
Given a Turing machine M. It is undecidable whether there exists an accepting computation on
the string [.

Confer for example to [Sch92a, p. 121].

3.3.2 Encodings of Computations

An accepting computation can be encoded via bit-vector terms with unrestricted size, variable extraction
and boolean operations. In particular, given a Turing machine M, one can compute a bit-vector equation
E(M) with:

M stops on empty tape iff E(M) is satisfiable

Encoding the Alphabet ¥

Let ¥ be an arbitrary alphabet with OO € X. Without loss of generality there exist three special characters
“{ry@r, HEE S Let =S U{),#}, T':=ZU{{(,),#}. Since we also want to encode states with
0/1-strings and a encoding of static size is desired, we define

o= max(Nlog, ()] +1, Mogy(ISNT +1)

Then each letter of ¥’ can be encoded via a String in {0,1}"!. Define a mapping ¢ : " U S — {0,1}"
where

p: ¥ — 0-{0,1}7!
with ¢: # — or
and p: (= 1"

and ¢: S — 0-{0,1}!

¢ is chosen injective with respect as well to X as to S, though not to £ US. The extension of ¢ to (XU S)*
is denoted with ¢.
It is crucial for the following argumentation that the encoding of “(” is the only one beginning with a “1”.

CHAPTER 3. ON DECIDABILITY 35

Encoding State Transitions
There has to be a method to encode the “correctness” of a computation step by means of “matching”
configurations k; and k; + 1. There following difficulties are encountered:

e it has to be possible for characters to “swap” to the other side of the read/write-head

e sometimes it is necessary to “pump” some blanks in or - if we encountered the end of the tape - delete
some blanks.

Informally, the relevant point of any computation step can be coded to bit-vectors like

sy [oapl el B Sw [ordopreal, [dimcoprgen -]

where d|,) is the new character under the read/write-head and a’[g|,|2r],¢'[0/r|2r] are the end of the preceding
tape (respectively the beginning of the succeeding tape). The notation [0|r|2r] is meant to indicate that
either of these three sizes is possible. Note that the actual “correct” value is dependent on §.

Instead of a'[g|,|2,) consider the string a" := a’[0|r‘2r]®1®02’. Though the size of a” remains unknown, all
relevant information is contained in the leftmost 2r bits. Moreover, since the “padding” on the right side is
terminated with a “1”, it is possible to reconstruct content and size of a'(g|,[2,] from the lower 2r + 1 bits.
This trick is used to perform the following definition:

validg (S[r], arr), b[r], Clr)» S'[r], (a’[0|r‘2r]®1®02’)[0 2 2r], d[r], (c'[o‘r|27«]®1®02r)[0 : 27"]) =
{ Iy if (s,---a,be--) F (s, -al,de" -)
Opy else

Strictly speaking, the input to wvalids is a combination of r +r+r+r+r+2r+1+4+r+2r+1=10r +2
bit-vectors of width 1. Tt is clear that, given 4, a corresponding boolean function resulting in a bit-vector of
width 1 can be constructed.

Encoding Computations

The whole encoding idea works as follows:
e Guess a string encoding an accepting computation,
e Verify that each step of the computation is correct.

Here we have got the problem of separators—informally, they cannot be encoded reliable. More precisely,
one cannot encode an arbitrary string not containing the encoding of a special character. This problem is
avoided by introducing a “step counter”. This is a string over {#}*, increasing with every step by one “#7.
The k™ computation step (s,---a,bc--+) = (s',---a’,dc' -+) is represented as

(St P12 Q) # O i Az (8 1 #1210 [0 2 BT 1€ 012 Q2 0]

The term #* is not a valid bit-vector term itself, but can be replaced by one. Since ¢ maps # to 0", this can
be matched by a bit-vector term k[2., consisting entirely out of 0s. This property, though, can be enforced

by adding the simple equation kp7.,j®0p; < 0[1)®k(z.r). Thus, the term above is really represented as
(81mEr2-r)Pr-r @i kb e (8" 1 k- 071 @' (o) 1201 k121107 € 0] 201 012 1)

Dealing with Large Alphabets

The aspired formula is be roughly something like

Jwpp,. Vi > constj : wp.[7 0] = (k™ state...((k+1)™ state...

CHAPTER 3. ON DECIDABILITY 36

However, this can not be achieved straight-forwars.

The i character of wy,.,] is required to be a “(”—this cannot be true for all i. The first idea is to introduce
some padding in front of “(k™ state...” to allow the matching to slip to the next “(”. But this is not a
solution. Since the computation is arbitrary long, the encoded tape cannot be restricted. Therefore, the
length of the padding cannot be restricted in general as well. This means, that the matching could slip to
any next “(”, thus destroying the correctness condition, for “nonsense steps” could exist that this formula
would not encounter as failures.

The second thought is to avoid certain bit-patterns in the padding, thus introducing something like separa-
tors. As stated above, this does not seem to be possible in general for alphabets larger than |X| = 2.
However, the following idea works: If the first character is not a “(”, the whole matrix evaluates to a trivial

equation at once. Let £, L Uy, be the original matrix equation. Then this idea is realized by the following
detour:

e Instead of éu[m], equivalently state = (t,,,) = upy,)) . Ofm] -
e Due to the special encoding of “(”, the extraction [j : i] matches an “(”, iff wy,..[i : i] = 1p
e Let vp,;,) be another bit-vector variable

e vy, can be “forced” to consist purely of the same bit like wp,.[i:i] via

Vi) OWn-p)[1 2 8] = Wiy i 2 1] @V
e Thus, —-((t[m] = Upm)) V v[m]) éO[m] is satisfied either if

© [y and up,) can be made equivalent,

or o the term wiy,.,[j : i] does not start with “(”.

We are now ready to take a look at the complete formula.

The Reduction Formula

Let M be a Turing machine and walids the corresponding boolean function. Then a bit-vector equation
Wiy.y) encoding an accepting computation is encoded in the following quantified formula Z¢(M):

In e IN,n > 131, € IN.3w : bvecy,,.,.3ly € IN.Fw' : bvecy, .r.
Vi € IN.3j > i.3v : bvec(j-ga)..- Iy, € IN.Tk : bvecy,, ..
3, € IN.dp : bveqy,,.».3l; € IN.3q : bvecy,..3a : bvec,.3b : bvec,.Jc : bvec,.
dl, € INgy, 1, < 2.3a’ : bvecl .3d 2 bvec,. . € IN,l. < 2.3¢ : bvecy, ..

VWi i) = w[z ri-r]®u
A valzd(;(s,a,b,c,s (a’11)01207)[0 : 2], d, (c"1}1)012,7)[O : 21‘]);1
N O W W A) K2 R
A ¢(<so#>m #DD) ®w'®¢((sT#”>D #nmm) L

The same formula without quantification is referred to as Z(M).
With respect to better readability the matrix is written as a conjunction. However, it can easily be verified
that this conjunction can be written equivalently as one equation, where

®(left hand sides) = ®(right hand sides).

Lemma 3.6: [Turing Simulation)]
An accepting computation of M exists iff 2 (M) is valid.

CHAPTER 3. ON DECIDABILITY 37
Proof: =: Assume K := ko$k1$ - - $k,, is an accepting computation. Then K can be transformed into a
bit-vector wy,, ., == (ko) ®R&(k1)® - - ®E(ky), where

£(siypirqi) = ¢ ((Si#i>pi#iQi)
Then, for each step an extraction wy,, ., [i : j] exists. Thus, Zq(M) proves to be valid with respect to the
quantification and according to the Quantification Lemma 2.9.

«: If Eg(M) proves to be valid, a bit-vector w exists that can be transformed via p=!

computation.

into an accepting

O

3.3.3 The Non-Existence Theorem

The preceding observations lead to the main theorem of this section:

Theorem 3.7: [Non-Existence Theorem)]

There is no complete frame solving algorithm for the theory of bit-vectors with variable width,
variable extractions and boolean operations.

Proof: Assume such an algorithm s exists. Then, given an arbitrary Turing machine M, s(2(M)) yields
either false, true or a set of frames representing a most general solution. In the first case, no accepting
computation exists. In the later two cases the application of the quantification lemma (2.9) allows to check
the validity of the quantified formula ZEqg(M). According to Lemma 3.6, a computation exists if and only
if Zg(M) is valid. Thus the halting problem of M on the empty tape can be decided. This yields the
contradiction. O

3.4 Semaphore

We have seen that the solution of bit-vector equations is a task less trivial than it is desired. There seems
to be a natural difference between solving in theories with fixed or unknown size. In particular, no complete
classic solver can exist for the later one (cf. Example 2.6).

This motivates the further proceeding: The next chapter is dedicated to the discussion of solving fixed size.
Some approaches are presented and compared with respect to their efficiency. One of these is taken over to
the last chapter, discussing unknown size, and adopted to the requirements there.

Chapter 4

Solving Fixed-Sized Bit-Vector
Equations

By three methods we may learn wisdom:
First, by reflection, which is noblest;

Second, by imitation, which is easiest;

and third by experience, which is the bitterest.

(Confucius, 551-479 b.C.)

In this chapter, three distinct approaches for solving fixed-sized bit-vector equations are explored and com-
pared regarding expressiveness, efficiency and possible extension to more general theories.

4.1 Solving Bit-Vector Equations via Monadic Logic

Weak monadic second order logic of one successor is used to express bit-vector equations. This language
is a decidable fragment of second order logic (cf. [Biic62]). By means of the MoNA Tool [BK95, HJJ*96]
the formulae are transformed to finite automata that can be utilized to construct a solver for the theory of
fixed-sized bit-vectors with concatenation, extraction, boolean operations and arithmetic. Various run-time
experiments are performed.

4.1.1 In the Domain of WS1S
W S1S stands for weak second order logic with one successor.

Definition 4.1 [The Language WS1S]
The language W S1S consists of three syntactic categories, each of which contains variables, constants and
existential and universal quantification:

e booleans [0™ order] including the usual boolean connectives,
e positions [1°" order] interpreted as natural numbers from 0 up to the upper bound §,
e sets [2™ order] of positions, namely subsets of {0,...,$}.

Formulae in W S1S are defined in the usual way. Of special interest is the operation p + n which is defined
as a function on positions or sets, given the second argument n is a fixed integer number. The semantics of
'+’ is an increment respectively a family of increments of n steps to the right, applied on the first argument.

J

38

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 39

(a&b) | (a&c)l (b&c);

pred at_least_two(var0O a, b, c) =
= (a <=>Db <=>c <=>d);

pred mod_two(var0 a, b, c, d)

pred add2(var2 A, B, Result) =
ex2 C: ((alll p : (mod_two (p in A, p in B, p in C, p in Result)) &
((p+1 > 0) =>
((p+1 in C) <=>
at_least_two(p in A, p in B, p in C)))) &
(0 notin C));

Figure 4.1: A Simple Ripple-Carry Adder in W S1S

Note that the language WS1S is expressive enough to encode Presburger arithmetic (cf. [Pre29], [Bar93,
Rabin: Decidable Theories]). If each set is understood as a collection of bits (starting at position 0 as the
least significant bit), this results in an intuitive encoding of IN. Addition with two summands is encoded by
means of a ternary predicate, simulating a ripple-carry adder (cf. Figure 4.1), extension to more summands
is straight-forward.

4.1.2 Encoding Fixed-Sized Bit-Vector Equations in W 515

Given a bit-vector equation ¢t = u, an equivalent W.S1S-formula is generated, which is then translated to a
correlated automaton. Finally, this automaton is used to generate a most general solution for ¢t = u.

$
Definition 4.2 Let pad: | bvec; — {WWS1S-sets} be defined as
i=1

i
pad(c,) = {il0<i<n A qgli:i=1y}
A bit-vector equation ¢t =« and a W S1S-formula ¢ are called equivalent, if
e The only free variables in ¢ are second order.
o There exists an isomorphism ¢ between Vi, := vars(t) U vars(u) and V,, := vars(p).

o for all wy : bvecy,,,...,w, : bvecy,, :
zr=wi A...ANxp=wy Et=u iff Y(z1)=padiw)A...AN¢(x,) = pad(wy,) = ¢.

Lemma 4.1:

For each bit-vector equation t = u, there exists an equivalent W .S1S-formula ¢.

Proof: [by Construction]

Let t=wu be a bit-vector equation with variables Vi—, = {Z1[n,],- -, %n[m,]}- Roughly, the construction
defines a conjunction ® of W S1S formulas called axioms, a conjunction ¥ of W S1S conditions and a second
order equation T'= U that is a translation of t =u to WS1S. A sketch of the construction of ¢ is given as
follows:

e For each occurring length of subterms introduce a second order variable Filter; and add to ®:
alll p: ((p < %) => p in Filter;) & ((4 <= p) => p notin Flilter;)

e For each ;[,,,] introduce a second order Variable VAR z; and add the following condition to ¥:
alll p: (m; < p) => p notin VAR x;

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 40

e For each constant c[,) introduce a second order Variable CON ST .n_value, where all information about
Cn) is added to ®. For ¢, = 1) this would be:
(alll p: ((2 <= p) => (p notin CONST_2_1)))
& (0 in CONST21) & (1 notin CONST_2_1)

e Replace concatenations t1;,]®%2(;,) by a position shift of the right argument, followed by a union, like
(t1) union (t2 + Iy)

e Replace extractions by intersections with the proper Filter;, eventually preceded by a position shift.
E.G. z[g)[5 : 2] transforms to
(VAR, - 2) inter Filter,
e Addition is simulated by means of a relation, i.e. an addition ¢1j +; 2 is represented as a constraint
add2(t1)tz Result) in ¥ and the sum in the W S1S-term is replaced by (Result inter Filter;).

For additions with more than two arguments, the corresponding predicates add3, add4, ... are
introduced.

e Boolean operations are first mapped into equivalent boolean formulae with the operator set —, A, V.
These can be represented straightforward by the W.S15S operations complement, intersection and union
respectively.

The actual W S1S formula to process is defined as
¢ = ex2 Filter; ex2 CONST.iij: (PA(¥=(T=U)))

® contains properties of filters and constants, thus guaranteeing the only correct interpretation is choosen by
the existential quantification. ¥ basically states that no variable does contain true-bits beyond it’s width.
The equivalence to t = u follows by inspection. O

To give an example, the simple unsatisfiable formula 1(;)®z[5; = 25®0(y) is transformed via the construction
in Lemma 4.1 to the equivalent WS1S formula in Figure 4.2.

4.1.3 From Bit-Vector Equations to Finite Automata

It is well understood, that W.S1S is strongly related to regular expressions (cf. [vL90b, p.137]). This relation
can be expressed by means of finite automata:

Definition 4.3 Let ¢ be a W S1S-formula with free second order variables V :={vy,...,v,} and upper
bound § of the position. Then a finite n-tape automaton is called the correlated automaton A, if

Ywy,...,w, €{0,1,...,8}: Ay(wr,...,wy) accepts iff {vi =wi A...Avy=w,} E o

Roughly, for each ¢ € WS1S, the MoNA Tool computes the correlated automaton A,. If the formula ¢ was
unsatisfiable or valid, A, accepts) or £* respectively.

Lemma 4.2: [MoNA Construction]
For each W S1S-formula ¢, the correlated automaton can be effectively constructed.

Proof: Confer to [HJJT96]. O

Theorem 4.3:
For each bit-vector equation ¢t = u there exists a finite automaton A;—, such that

1. As—, accepts X* if t = u is a tautology,
2. Ay, accepts () if ¢ = u is unsatisfiable,
3. Ai—, accepts {(wl, ey Wy) |t[xi[mi] [wi] = u[Tifm, /wz]} else.

Proof: By Lemma 4.1 and Lemma 4.2. 0

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 41

var2 VAR_X_5;

ex2 CONST_1_1,CONST_1_0,Filter_5: (

((alll p: (((p < 5) => (p in Filter_5)) &
((5 <= p) => (p notin Filter_5)))) &

(alll p: ((1 <= p) => (p notin CONST_1_0))) &

(0 notin CONST_1_0) &

(alll p: ((1 <= p) => (p notin CONST_1_1))) &

(0 in CONST_1_1)) &

(C ((all1l p: ((5 <= p) => (p notin VAR_X_5)))))

=> ((CONST_1_1 union ((VAR_X_5 inter Filter_5) + 1))
= ((VAR_X_5 inter Filter_5) union (CONST_1_0 + 5)))))

Figure 4.2: WS1S Representation of the Unsatisfiable Equation 1;;®z[5=2®0[

4.1.4 Constructing Solutions from Automata

Though an automaton represents an expressive encoding of a most general solution, it is desirable to compute
a solved form according to section 2.2.3. This can be performed generatively by means of introducing OBDDs
(see Definition 2.5). In the following a straight-forward algorithm is presented, that can be refined to yield
a shorter representation of the solution.

Lemma 4.4:

For each finite automaton A, a corresponding solved form can be constructed.

Example 4.1 [Constructing the Solved Form)]

Consider the bit-vector equation x[3)+21y[2] L 2[9). After translation to the equivalent W S1S formula, MoNA
returns a finite automaton, which is reduced to a form omitting non-successful branches:

-
o o
e
N
(SN e)

0

O ()0

0

0
01

1

0
.@>

[
—
or
o

01
‘<llii> 01
Automaton as Constructed by MoNa Reduced Automaton

The upper symbol on each transition edge refers to variable x5 and the lower symbol to yp. Accepting
nodes in a depth falling short the length of the smallest bit-vector variable are transformed to non-accepting
nodes. An accepting node can only occur in the depth matching the width of the longest variable, deeper
nodes and edges are deleted.

The construction works bit per bit. The first bit of x5 is unrestricted, for either choice can lead to the
accepting node. Thus, x[5[0 : 0] is set to a fresh variable §. Then, y3[0 : 0] is necessarily ¢ as well. This
completes the computation of the leftmost bits, the old root (1) is deleted, leaving the two automata high-
lighted grey.

Starting at either of the new roots (2) or (4), the choice of [y [1: 1] is arbitrary and therefore set to ¢'.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 42

In the lower path (4)-(5), where § evaluates to true, y5[1: 1] has to be chosen opposite to ¢, whereas
in the upper path (2)-(5), it has to be identical with ¢’. This is expressed by means of the OBDD
ITE (6, ITE (6', 1, 0), ITE (§', 0, 1)). The final result presents as

T = 0 ® ¢

Yy = 6 ® ITE(§,ITE (8',1,0),ITE (0',0, 1)).

Proof of Lemma 4.4: [by Construction]

First, the reduced automaton is constructed, which is the initial element of a set A of reduced automata.
The algorithm proceeds bit by bit, i.e. it traces breadth-first through every automaton in A in parallel,
introducing fresh variables (if necessary) and checking dependencies respectively.

Each step might—while deleting the root nodes—split the automata to several new rooted automata that
are stored in A. With each step, the representation of each concerned original variable grows by one bit, that
is either a constant, a fresh variable or an OBDD. For each original variable z;(,,,}, step j can be sketched
as follows:

e Build an OBDD reflecting the dependencies of the next choice for x;,,,j[j : j]- It might be necessary
to introduce a fresh variable as well to represent ambiguities in a distinct branch of the OBDD (i.e. if
there is no functional dependency of the j™ bit of @;fp,,).

e This OBDD might simplify to fresh variables or to a constant.
e Append this OBDD to the so-far description of z;[,,], unless the width of x| was already exceeded.

Continue until every automaton in A is reduced to the accepting node. The obtained description of each
original variable is a complete and correct representation of a solution, but not necessarily the simplest one.

O

Optimization of the Algorithm

There are two points where an optimization of the sketched algorithm can be applied. The major drawback
is the split-up to every single bit. This can be avoided by introducing the notion of hyper-edges, marked with
strings instead of characters. While clustering edges to hyper-edges, which are allowed to perform several
transitions at once, a smaller but equivalent automaton is obtained.

A second point is that the algorithm implicitly assumes that every variable is dependent on every other.
Practically, this is rarely the case. It might be possible to split the original automaton into a set of smaller
automata, each only processing a disjoint set of original variables. The optimal partition can be found by
an (possibly exhaustive) independency check, like “If y[i : 4] is chosen arbitrarily, does this affect z[j : j] in
any branch?” for all z,y,1, 7.

4.1.5 A Short Glimpse at the Complexity

The complete transformation of a bit-vector equation to a W S1S formula leads to a moderate blow-up in size.
Transformations of concatenations, extractions and even additions are performed in linear time, and yield
just a linear overhead of introduced F'ilter and Result variables. The transformation of boolean operations
to equivalent expressions using only operators —, A,V is possible with expense O(2"), if n is the number of
arguments in the original expression with any 1-ary and 2-ary connectives allowed. Not too bad. We cannot
expect to obtain a solver polynomial for all inputs anyway, at least if we are fond of the conjecture P # NP.
Really time-consuming is the construction of the correlated automaton—though W S1S is decidable, the
complexity of deciding a formula in general is staggering. As demonstrated in the following, realistic sized
examples push the limits of this approach.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 43

4.1.6 Run-Time Experiments

A grid of (hopefully) representative examples was processed by means of MONA, incrementing the usage
of operators as well as the width of the terms. Either results in a noticeable slowdown—surprisingly, the
capacity of MONA is soon exceeded. In particular, the usage of position shifts resulted in run-time errors?,
or—even worse—in a crash of the MONA program (as in example C1) at low width. The author does not
have a satisfying explanation for this behavior, since the operation itself is expected just to shift sets of
internal variables by an fixed offset.

The experiments used an Allegro Common Lisp 4.3 translation algorithm presented in Appendix C.1 and
were executed on a 143MHz Sparc Ultra 1 Workstation. Measured was the run-time of the MONA program
(Version 1.1), the translation time to WS1S formulae was neglected. The examples are grouped into three
categories A, B and C, each containing six plots. The first three plots are terms in the core theory together
with boolean operations, whereas the ones on the right-hand side allow addition as well.

A. Checking Tautology

The equations processed in this category are tautologies. The task of detecting this is usually performed
via canonization, but as noted in section 2.3.2, canonization of boolean operations can be an expensive
operation itself. Thus, the MONA tool had to check the equivalence of n-bit functions here. As observed
in A3, a concatenation (expressed by means of position shifts) is a very consumptive operation, whereas
addition (A4-A6) is processed in reasonable time.

B. Checking Unsatisfiability

For unsatisfiable equations, MONA eventually results in an automaton accepting . The way to obtain this
automaton might be difficult, though. Again, concatenation (B1) yields a bad performance, whereas the
examples involving logic an addition take at most 65 seconds.

C. Satisfiable Equations

The equations in this category are satisfiable, but not valid. The time measured does not include the back-
translation of the automaton to a solved form, but the gained automata encode the most general solution.
Position shifts are once more a problem, caused by an extraction in case C1. It might be surprising, that
the behavior in examples C4-C6 was roughly the same as e.g in B4-B6, though the resulting automata are
far more complicated here.

2In examples A3, B1, C2 and C3 MONA returned at width 16 the error message “Memory management library: error:
mem_get_block: allocation failed”.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS

40.0

30.0

20.0

10.0

|4

48 64 80

!
C[n] = Cn]

32 96 112 128[n]

3.20

2.40

1.60

v

0.80

Pyl

64 80

96 112 128 [n]

!
T[n] = T[n]

300

240

180

120

=
=

60

32 48 64 80 96 112 128 [n]

!
T[21®Y[2] = T[2]1QY[2]

2

10.00

8.00

6.00

4.00

100.0

80.0

60.0

40.0

20.0

6.00

4.00

2.00

0.00

44
[s]
i //
7_@\’69{6 T T T T T T T T T
0 16 32 48 64 80 96 112 128[n]
!
A4 i)t (n)Yin) = Yin) Tl Tin)
[s]
0 16 32 48 64 80 96 112 128]n]
!
A5: T(n) (0] On] = T[]
[s]
0 16 32 48 64 80 96 112 128]n]

AB: 1y o) = 01 9(o) 0 2 1]

Table 4.1: Checking Tautologies via MONA

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 45

[s] [s]
0.500 - 200

0.400 QF 160
|
l

0.300 & | | 120
LR ! 1 |
0.200 LA o] q 30
L] L] K
0.100 40 /
— — /é
0.000 T T T T T T T T T T T T T 0 AT T T T T T T T T T T
0 16 32 48 64 80 96 112 128 [n] 0 16 32 48 64 80 96 112 128 [n]
! !
B1: T(5197(3] = I Ba:)+l (0] = O}
[s] [s]
100.0 - 100.0 -
80.0 80.0
60.0 60.0
40.0 40.0
20.0 / / 20.0 / /
| /é | /é
0-0 PRYTT T T T T T T T T T T T 0-0 i T T T T T T T T T T T
0 16 32 48 64 80 96 112 128[n] 0 16 32 48 64 80 96 112 128[n]
! !
B2: T[p) AT () = 11 B5: T(n)) L) = T(n]
[s] [s]
100.0 / 100.0
80.0 80.0
60.0 60.0
40.0 40.0
20.0 20.0
/é /’é
0-0 m\ T T T T T T T T T T T 0-0 %‘ T T e/\ T T T T T T T T
0 16 32 48 64 80 96 112 128[n] 0 16 32 48 64 80 96 112 128[n]
! ! n
B3: 2]V 1n) = Oy B6: T A (0®1‘[n] [0:n-2]) = (120)=

Table 4.2: Checking Unsatisfiability via MONA

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS

1=—asy

20.0
16.0 |
[a] [&] EY &
12.0 bl 1 1
_ 1 1 1
T i | §
50 / 4] (4] 4] |
4.0 l
0.0 T T T T T T T T T

96 112

0 16 32 48 64 80
!

C1: zp9y[n @ 2n-1] = 25,1 [0 : n-1]

[s]
1.000
0.800 -

1 3] 3] £
0.600 w1 | j j

i } 1 1 1

| T)]] % $
0.400 / Salt K 4§
0.200 |
0.000 T T T T T T T T T

0 16 32 48 64 80 96 112 128]n]

!

C2: Z®y31=Y51973)

[s]
1.000
0.800
0.600 = | ‘ ‘

INBIYE i 1

1 i x !
0.400 | j =18 K 4§
0.200 b
0.000 | T T T T T T T T T

0 16 32 48 64 80 96 112 128]n]

C3: O @ags) = o2 90y

20.0

16.0

12.0

8.0

4.0

60.0

40.0

20.0

0-0 TP T T T 77T 1T

20.0

16.0

12.0

8.0

4.0

0.0

46

[s]

| A
| v

| e
@@,@’———éé/

T[T T T T T

0 16 32 48 64 80

96 112 128 [n]
!
C4: 21 AYjn) = 21n) XOR (221m)

| e

e/

0 16 32 48 64 80 96 112 128]n]

!
Lln) +[n)Y[n) = On)

|]
| %
LT

T T 17T T T T T

0 16 32 48 64 80

96 112 128 [n]

C6:)+ (Y = 71y XOR Y[y

Table 4.3: Satisfiable Equations via MIONA

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 47

4.1.7 Extension to Larger Theories?

The WS1S representation of bit-vector equations works for fixed size. Why can z[,; not be encoded in
a similar way, if n is unknown? Of course, one parameter n can be allowed, if ¢ and u contain but one
parameterized variable at the rightmost position. Then, not WS1S but S1S formulae are constructed.
However, this attempt covers only a small family of equations and the usability is therefore questionable.

The crucial point is, that in order to encode a concatenation, one has to perform a shift on the bit positions
of some variable. These shifts are W S1S, iff they are constant. While trying to perform wariable shifts, a
serious problem is encountered. In order to represent terms like Set + var, it is vital to introduce a semantic
of a shift by a natural number. The only way to encode this, is by means of a second order variable.
If second order variables are used to encode as well the values as the width of a bit-vector, there is an
ambivalence. It has to be stated which is which. At least if the proposed encoding is followed, there seems
to be no way to cross this obstacle. According to the author’s estimation, these difficulties are invariant
under modification of the encoding.

How about using a stronger version of monadic logic, namely W 5257 Here we have a kind of tree logic, i.e.
monadic theory with two successor functions. Though this is one of the most powerful theories known to be
still decidable (cf. [BGG97]), the task of encoding bit-vector theory into it failed for the following reasons:

e We have to represent bit-vector variables as objects of arbitrary size. This can only be performed by
means of exploiting the tree depth.

e In order to express a concatenation, it has to be possible to “stick” one bit-vector to the end of the
other one. Thus, “the end” has to be known or marked.

e We can describe distinct positions in a tree, but the term structure allows no shift of a uncertain
amount of positions.

These are just arguments and not a proof that the proposed task is mutually impossible.

4.1.8 Semaphore

Monadic second order logic provides a system powerful enough to encode and solve bit-vector equations.
Concerning boolean connectives or simple arithmetic it shows a reasonable response time, but position
shifts seem to add enormously to this complexity. This indicates that W.S1S does not adapt closely to the
peculiarities of the theory of bit-vectors, where concatenations and extractions are used exhaustively. In
addition, it remains unclear how to extend the notion in a way to express variable width of bit-vectors in
general. This motivates the search for other approaches, adapting closer to the characteristics of bit-vector
terms.

4.2 Solving via an Equational Transformation System

Solving is, from a certain point of view, extrapolation of information. Thus, while processing an equation,
nothing is added actually, but brought into a more convenient form. This motivates to develop a solver just
by means of transforming information, until a fix point—the solved form—is reached.

In this section, a simple equational transformation system is presented, that can be utilized as a solver for
the core theory. It builds a basis for extension to boolean operations, arithmetic or variable width.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 48

4.2.1 Equational Transformation Systems

Definition 4.4: [Equational Transformation System)]
A equational transformation rule R is a formula

{pi=aq, - Pn=an}, predpi,qi,...,pn,qn) — {li=r1, -, ln="Tm}.
where pred is a 2n-ary predicate. If pred is omitted, it is supposed to be the constant true. The set
{p1=aq1, -+, pn = qn } is referred to as lhs(R) and {ly =ry, -+, by, =1} is denoted by rhs(R).

A matching (M, T) with respect to a equational transformation rule R is a set M of bit-vector equations
together with an substitution 7, such that 7(M) = lhs(R) A pred(M).

A equational transformation system or ETS is a set R of equational transformation rules. It operates on a
set T of bit-vector equations. In this context it is understood that for a matching (M, 7) with respect to

R € R, T updates to T (T \ T(lhs(R))) U 7(rhs(R)).

A set Y is called terminal with respect to R, if there exists no matching in T with respect to a R € R.

4.2.2 A Simple Strategy: Reduced Chopper

Bit-vector terms that are either variables, extractions on variables or constants are called chunks. The CTRS
presented in this section orientates on the

Concept of the Largest Chunks:
Treat only the chunks with the highest possible width as distinct objects.

Let x[,) and y|,,) denote bit-vector variables, py,; and qj,,,) represent chunks and s, ¢z and up; stand for
general bit-vector terms. The index of terms denotes their overall width. In the core theory these are in fact
fixed numbers. Constants are represented as defined in section 2.1.

The underlying data structure is a set T of bit-vector equations. Some equational transformation rules just
transform one equation to a set of other equations, some require two equations to perform a match. The
equational transformation system presented in Figure 4.3 is called reduced chopper and is abbreviated by
Cx. In order to explain how it works, it is necessary to introduce some special notions.

Definition 4.5 A coarsest slicing rule or short CS-rule is a bit-vector equation of the form p,; = sy,
where Dln] # S[n] but Dln] = a(s[n]).
An initial CS-rule set with respect to ¢t = or short init-CS(t = u) is defined as

init-CS(t =u) := {pn] =[] | Pin) = S(n) is & CS-rule that can be built with chunks in ¢ and u }
For example, if 2[4)[0 : 1] occurs in ¢ = u, init-CS(t = u) contains the CS-rule (4] = 2[4[0 : 1]@z4[2 : 3].
Let ¢ = u be a bit-vector equation on the variables Z1(p,], .-.; Tn[m,]- A solved set T, with respect to t=u
is a set of equations on 1[y,,, .-+, Tn[m,] Where the following holds:

1. vars(Y) C vars(t) U vars(u),
2.7 Et=u and t=ufE T,
3. for each z;p,,) € vars(YL), there exists an equation z;j,,,] = t[m;) € Y., which is not a CS-rule,

4. Y, is terminal with respect to t = u.
J

A solved set is not a valid solution according to section 2.2.3, since the same variable might occur on both
sides of an equation. However, a solved form can be easily obtained.
Lemma 4.5:

Given a solved set T, a solved form Y', according to 2.2.3 can be constructed, such that
Tl '= TIL and TIL |= TL

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 49

_ [P =am
(1) p®t = g ®u { P
Pln] = (q[m) [0 : 7 — 1])
(1) pp®t = qm)Ou, n<m — a(gmi[n :m —1))ou=t

Uim) = (qpm[0 : 1 — 1)) @a(gpm[n : m — 1])

Py = a(qm)[0 : n — 1)
(") P ®t = qpm) — a(gmn :m —1]) =t
Q) = a(gm)[0 : 1 = 1)@a(gmy[n = m — 1))

Pln] = (q[m) [0 : 7 — 1])

") qm) =P ®t — $ algun:m—1]) =t
qim) = a(qm)[0 : n — 1) @a(gm[n : m — 1])
(2)] =[] c#c — FAIL
(3) t=t - 0
w {rzib. ace = {p=lod
o {327 - {i=
o {rZ¢] ~ {p=q}
o) - ()
8) c=t, t#const — {t=c}

Figure 4.3: Reduced Chopper Cx — A ETS for Solving Bit-Vector Equations

Proof: Replace all occurrences of extractions on variables on the right hand sides of the terms z;(,,,,) = t[m,]
in Y| by fresh variables to obtain Y’ . 0

Theorem 4.6:
Let t = u be a bit-vector equation BV, 1;.;). Started on {t = u} U init-CS(¢ = u), the equational
transformation system Cy always terminates with a solved set.

Proof Sketch:

e By inspection, the equational transformation rules (1)-(8) are equivalence-preserving, in the sense that
the replacement of the matchings with the right hand sides does neither introduce new nor omit existing
information. Thus, given termination, the result is a solved set.

e Termination follows from the observations
(a) The rules (1)-(1"") actually decrease the width of the involved terms; thus, they can be applied
only a finite number of times.
(b) Rules (2), (3) and (6) yield a smaller set Y.

(c¢) Rules (4), (5), (7) and (8) do not enlarge Y. Together with (6) they build up a kind of union-find
structure, which is loop-free and thus terminates.
O

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 50

[s] [s]
0.020 0.050

~ ~ A
0.016 | 0.040

0.012 — . 0.030 (K /
0.008 7 \] 0.020 7 / \

e [TV

0.004 0.010
0.000 T T T T T T T T T 0.000 T T T T T T T T

0 16 32 48 64 80 96 112 128 [n] 0 16 32 48 64 80 96 112 128 ([n]

! !
Al:) = Cn) A3 T(3)®Y3) = T3 BY 3]

[s] [s]
0.020 0.030
0.016 0.024

0.012 - 0.018 - 7\

0.008

0.012

i "] | L 4
0.004 0.006
0-000 i T T T T T T T T T T T T T 0-000 T T T T T T T T T T T T
0 16 32 48 64 80 96 112 128[n] 0 16 32 48 64 80 96 112 128[n]
! !
AZ: T[n) = Tn) BI1: (3] 97(3]) = 1pn)

Table 4.4: Checking Tautology and Unsatisfiability via Reduced Chopper

4.2.3 Run-Time Experiments with Cy

Cy is implemented in Common Lisp by means of a match-and-rewrite strategy on a set of equations. The
algorithm applies the rules (1)-(8) in an randomized order, thus the run-time performance is rather a hint
than an accurate characterization. The measured time—again on a Sparc Ultra 1 Workstation—includes
the computation of init-CS(t =u). Since boolean operations or arithmetic are not included, some of the
experiments in section 4.1.6 can not be processed. Tautologies and unsatisfiable equations are displayed in
Table 4.4 and satisfiable but not valid formulae in Table 4.5.

Cx shows a good performance on simple equations that involve concatenations like B1. It deals only with
the largest chunks possible, so run-time increases not necessarily with term width (as demonstrated in
examples B1, C1 and C2). This yields much faster results than the procession via WS1S (cf. pages 44ff).
On the other hand, it is rather expensive to split up a wide variable to numerous bits, as seen in C3 and
C3b. This is explained by the growing number of CS-rules.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS o1

[s] [s]
0.030 130000

%% 1 /
0.024 - 104000
0.018 78000 |
0.012 52000 |
0.006 26000 |
0.000 T T T T T T T T T T T T T 0 7% T T T T i T T T T T T

0 16 32 48 64 80 96 112 128 [n] 0 16 32 48 64 80 96 112 128 [n]

! !

C1: T[2n] [TL : 2n—1] =T[2p] [0 : n—l] C3: 0[2]®:U[n_2] =£L”[n_2]®0[2]

[s] [s]
0.040 - 500
0.032 ®y@\/ e — 400

. . (&
0.024 300 - ;

1

i i 1
0.016 200 / 1
0.008 100 -
0-000 T T T T T T T T T T T T T 0 AT T T T T T T T T T T

0 16 32 48 64 80 96 112 128[n] 0 16 32 48 64 80 96 112 128[n]

! !
C2: 712)9y12) = Y[21922] C3b: 0202 [n-2) = T[n-2 @02

Table 4.5: Satisfiable Equations via reduced chopper

4.2.4 Semaphore

The reduced chopper algorithm is understood as the basis of a real efficient solver. The following drawbacks
are to mention:

e Nondeterminism - the guessing of the next step is a time-consuming feature.

o Explicitness of slicing information - the storage of all occurring CS-rules in Y can lead to an exponen-
tial blow-up in the number of equations, for there are 27'-n possible CS-rules concerning the term
Z[p] [0:0]®--- ®x[p) [n-1:n-1].

e Lack of boolean operations, arithmetic and variable width.

Tt is not reasonable to expect a solving concept to be as well most general and efficient. An argument in favor
of this is the Non-Existence Theorem 3.7. Thus, the extension forks in two ways. First, Construct an efficient
solving algorithm for fixed size on the basis of the reduced chopper; this should allow boolean operations

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 52

and arithmetic. This is done in the following section. Second, Expand the equational transformation system
in a way that allows processing of bit-vector terms with variable width, thus constructing a frame solver.
This is what the next chapter is about.

4.3 The Operationalization: Fixed Solver

The concept of the largest chunks—as applied in the previous section—is extended to an efficient and
deterministic representation of the reduced chopper algorithm. Simultaneously, boolean operations and
arithmetics are added. The resulting algorithm is referred to as fized solver.

In order to operationalize the reduced chopper, it is necessary to introduce a new paradigm: the distinction
between left-hand side and right-hand side of an equation. Roughly, the left-hand side is reserved to original
variables, and on the right-hand side there are constants and fresh variables. Fresh variables—in the following
denoted with aj,), b, dj,, and ef,—are introduced in order to express equality of chunks of original bit-
vector variables. Consider, for example,

T = apq @0y
Yne) = bpy @ap

These equations express that x4 starts with the same four bits (denoted as y16) ends with. The original
variables z[g) and y[6 are on the left hand side and the fresh variables on the right hand side. This proves
to be a very useful concept.

4.3.1 The Algorithm in an Overview

The complete algorithm can be separated in seven subsequent phases, as sketched in Figure 4.4. Boolean
operations and arithmetic is introduced by means of OBDDs and the canonical form is defined according
to Definition 2.6. The details are explained in sections 2.3.2 and 2.3.3. The input to the algorithm is an

bit-vector equation ¢ < u with fixed size, concatenation, fixed extraction, boolean operation and arithmetic
allowed. The output is a solved form according to section 2.2.3. Since canonization is—strictly speaking—not
part of the solver, it is listed as Phase 0. Note that tautologies are detected right after canonization.

4.3.2 Phase 1: Slicing

The two canonical terms ¢ and u’ are either simple terms (i.e. constants, variables, extractions or bit-vector
OBDDs) or concatenations of simple terms. They are sliced to possibly smaller simple terms, where the
width of all the chunks in ¢’ and u"" match by pairs:

o=ty ®tap, = i) © Bmy © B3mg] @ fapm

. —
WS U U, B uE U] © U] @ Uspmg] © Uifmy)

Also, all constants cf,) have to be split up to concatenations of terms 0y,,,; and -1f,,). This is necessary in
order to apply transformation to OBDD leaf nodes whenever required. Since all width information is fixed,
this step can be performed deterministically. The resulting set of possibly smaller equations is processed one
by one via the procedure chunk-solve.

4.3.3 Phase 2: Chunk-Solve

The input to this sub-procedure is an equation #;[,,, éui[mi] on simple terms. Chunk-solve yields a set of
equations of the form

(original variabley = (term over constants and fresh variables)

53

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS
Input: t = u
v
[Phaseo t = v Canonization]

8 Phasel 7 Slicing
| 1= t,Qt,®...tn
:' U=y ®Uu,®...QUup
Phase 2 e Y Chunk-Solve
| tl = ul t2 =u, tm: u,
\ | |
X = y

X = a y =¢ z = e w = h
=D =d
\ 5
Phase 4) \ Q;Coarsest Slicing
x=al a2 y=cl.c2 c3 z=e w=hi h2
: ‘bl b2 d1:d2:id3: Lo Do

\ Phase5 \, . N\ \ Propagation

al , a2 , ~cl ,.c2 . c3

bl b2 di d2 d3

Figure 4.4: The Fixed Solver in an Overview

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS o4

Recursive Procedure OBDD-solve
Input S: OBDD
Ler S =ItE (P, Bp, Bp)IN
LET § be a fresh variable
EQp := P =11E (Bp, ITE (Bp, J, true), false)
Cstrnt := ITE (Bp ,true, Bp)
/* Bp V Bp */
EQ-set :== OBDD-solve(C'strnt)

RETURN {replace-original-vars-on-right-hand-side-via-EQ-set(EQp)} U EQ-set

Figure 4.5: The Recursive Sub-Procedure OBDD-solve

Basically, there are four cases (a)-(d):

(a) At least one term t;[,,,] is a constant

If the second term w;(,,,) is identic to ¢;,,,], the empty set is returned. If it is a different constant, the solver
aborts with false; otherwise, chunk-solve yields the set {t;[,,;] = tifm,] }-

(b) The set vars(t;f,,,)) N vars(uipy,,)) is empty

If no OBDDs are involved, #;[,,,,] and w;y,,] are just two chunks that are meant to be equal. In the reduced
chopper algorithm, this fact is represented by this very equation, but following the paradigm of left-hand

side and right-hand side, it is expressed by means of introducing a fresh variable a,,; that is put on the
right-hand-side at the appropriate position. E.G. chunk-solve(x[y = y[4[0 : 1]) results in the set

{ TR = ap, } _
Y = ap®by
Here, the fresh variable bpy is just a place holder to pad parts of yj4 that are not effected by the equation.

(c) Both terms are extractions on the same variable: @[] :] éx[n] [l: k]

Without loss of generality, let j <. Then, three different cases are possible:

(1) j=IAk=1 = 0
(2) 1 <l = {zgm= b[j—l]®a[i—j+1]®d[l—ijl]®a[i—j+1]®e[n—k—1] }
(3) i>l = { Tp) = b[j_1]® ext(a{l_j], k-j+1) ®d[n—k—1] }

In (2) and (3), the variables b, d and e are paddings that are omitted if their length evaluates to 0. In general,
chunk-solve offers here a shortcut of the iterative application of the reduced chopper rules (1)-(1""). For a
detailed explanation of this case split see [CMR96], where a predecessor of the fixed solver algorithm was
published.

(d) One term is an OBDD

In this case, the other term is lifted to an (possibly trivial) OBDD and the boolean connective equivalence

“=7 is applied. Instead of solving OBDD; = OBDDs, the equation (OBDD, =0BDD:) < true is pro-
cessed. As stated in [CMR97], this can be performed via the procedure OBDD-solve presented in Figure 4.5.
The procedure yields a set of equations, where original variables are on the left hand side and fresh variables
are nodes in an OBDD on the right hand side.

To give an example, the equation 4 V y[4 X -1(4) is processed as follows:

OBDD-solve(ITE (2141, -1147, ITE (ypa1, -1jap, Op))) = 4 41— 214D }
solve((:v[4] [4] (?J[4] [4] [4]))) { Yu = ITE (a[4],ITE (b[4],-1[4],0[4]),-1[4])

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 99

4.3.4 Phase 3: Blocking

The numerous equations returned by chunk-solve are collected according to the original variables. The set
of bit-vector terms on the right hand side is referred to as a block. The equality of these terms is propagated
later on, similar to the reduced chopper rule (7) in Figure 4.3.

4.3.5 Phase 4: Coarsest Slicing

On each block a slicing according to its contents is performed. Thus, the block splits up into a set of
columns, each consisting of a set of simple terms that are required to be equal. In order to propagate
equality, referential transparency is desired. This means, if information about a chunk a is processed, only
places are affected where chunk a occurs. At the current state there might exist terms like agq and ag4[0 : 1].
During this phase, all occurrences of a4 are then replaced by the term apy[0 : 1]®a4)[2 : 3]. Possibly, this
leads to further split-ups of the columns an so on. This iterative process terminates at latest, when each
column is of width one. The finally reached split-up of fresh variables into the coarsest possible chunks
reached is referred to as the coarsest slicing.

It is a justified question why this step is applied here and not much earlier. For example, if it would have
been applied during the slicing, all occurring chunks were already known. Roughly, this is the approach
followed by Bjgrner and Pichora [BP98], where a normal form of an equation is computed a priori by means
of functions cut and dice, thus anticipating a kind of coarsest slicing.

An argumentative consideration leads to the design decision drawn here. Due to the typical application in
formal verification, most equations processed via decision procedures are either tautologies or unsatisfiable.
The strategy is to detect these cases as soon as possible.

Tautologies are detected after canonization. But unsatisfiability could be detected at first after the chunk-
solving. Consider for example the equation

Iy ® Om®zp L
Oy ® 2 ®0py

A coarsest slicing eventually splits up z[,) to chunks of width one. But it is obvious that this equation
cannot be satisfied because of the non-matchable leftmost constants. This is detected by chunk-solve, thus
a split-up of z[,) can be avoided.

4.3.6 Phase 5: Propagation

In this step the equality within each column is propagated. The applied method is to build up a union-find
structure (for example see [Sho78, GHR93]) in a way that there is a procedure pair union and find, where

find(.) : maps each occurring chunk to a unique representative
union(., .) : merges the representatives of both arguments

In the beginning of the propagation, find maps each chunk to itself. When a union of two different constants
is attempted, the algorithm aborts with a false like in the reduced chopper rule (2). If no OBDDs are
involved in a union, the unique representative is set to the constant (if any) or one of the representatives
of both arguments. If a chunk was updated to another representative, it has to vanish completely. It is
crucial that this replacement operation affects every occurrence, especially in OBDD nodes. If additional
information concerning a OBDD node applies, the structure of the OBDD changes. Consider for example
the OBDD (3 A y(3), where a union(z3)[2 : 2], 1)) is called. The OBDD structure specializes as follows:

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS o6

Example 4.2
gy [0:1] X gy 2:21 x5, 104
\ y[3\][0:1] ® \ y[3\][2:2] 23 [)2_);2]:1 y[g\][O:l] ® /y[i][z;z]
0y21 Ly 01 Ly Orz Lz 01 Ly

ITE (73)[1: 2], ITE (y[31[1: 2], -127, Oz)), Opg)) @

ITE (23, 03], ITE (y[31,0(3, -1j3))) ITE (yiz[0 : 0], 11y, Opy))

It is guaranteed by the coarsest slicing that the split-up as seen on the left side was already performed.

Applying union on Bit-Vector OBDDs
If at least one argument of union is an OBDD), the operation is slightly more complex. Intuitively, it has to

be made explicit that the equation argument; £X arguments evaluates to true in any case. Both arguments
can contain arbitrary many chunks. This task can be performed as follows:

e Build OBDD := (argument; = arguments),
e if OBDD = false, abort the algorithm and return false; else
e Compute eq-set := OBDD-solve(OBDD),

e Replace any occurrence of a chunk on the left-hand side in eg-set by the corresponding right-hand side.

4.3.7 Phase 6: Recombination

If the algorithm did not abort with true or false previously, a conjunction of equations of the following form
is generated:
(original variabley = (term over constants and fresh variables)

The right hand side is constructed as a concatenation of the columns obtained in phase 4. Since the equality
in each column was propagated in phase 5, any element of the column is mapped via find to a unique
representative that is either a constant, a fresh variable, an extraction on a fresh variable or an OBDD.

If any extractions on fresh variables occur, they were generated in phase 4 during the computation of the
coarsest slicing. If a clean output with no redundant extractions is desired, all of them can be easily replaced
by fresh variables of appropriate width. In any case, the set of equations put out is a solved form according
to section 2.2.3.

4.3.8 Run Time Experiments

The fixed solver described above was implemented in Allegro Common Lisp. A source code is included in
Appendix C.2. This implementation has been applied to all the examples described in section 4.1.6. The
run-time measured on a Sparc Ultra 1 contains both canonization and solving. The canonization time is
marked by a “®” and the overall computation time by “®”.

To put it in a nutshell, the fixed solver shows a good performance with concatenations and extractions
and a moderately good behavior, if complex boolean operations or arithmetic is involved. It adapts better
than the reduced chopper to cases where iterated slicing has to be applied, as demonstrated in example C3.
If complicated OBDD information is processed, the algorithm soon reaches it’s limits as seen in C5 and
C6. This is explained by the expensive propagation of equality, if OBDDs are involved excessively. The
computation on width 8 was aborted after more than 20 hours. As described in the next section, the
performance in these cases can be improved notably by means of introducing heuristics.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS

[s]
0.010

0.008

0.006

0.004

0.002

48 64

!
C[n] = Cn]

80

96 11

2 128 [n]

0.008

0.006

0.004

0.002

48

!

T[n] = T[n]

80

96 11

2 128 [n]

0.004

0.002

0.000

L5190y

48

!

2

80

!
=2[219Y[3)

96 11

2 128 [n]

[s]
200

o7

160

120

v

80

2.00

32 48 64 80 96 112 128[n]

!
T(n] Fn)Yn] = Yn] tn)Tin)

1.60

0.80

A

0.40

P

- / iy
0.00 *‘gﬁw/ga T T T T I I

/QQ’ ®

96 112 128 [n]

0 16 32 48 64 80
!
A5 T(n) (0] On] = T[]

[s]
10.00
8.00 }

| i
6.00
4.00 |
2.00 - K

0 16 32 48 64 80 96 112 128]n]

AB: 1y o) = 01 9(o) 0 2 1]

Table 4.6: Checking Tautologies via Fixed Solver

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 58

[s]

0.010
0.008 |
1 -
/
0.006
|
0.004
4]
0.002 s
XX X T
0.000 T T T T ‘ T T T T T T T T T
0 16 32 48 64 80 96 112 128 [n]
!
Bl T(3197(3] = In)
[s]
0.010
0.008 |
i L]
i /
0.006
| ®
0.004 by b
XX X
0.002
0-000 i T T T T T T T T T T T T T
0 16 32 48 64 80 96 112 128[n]
!
B2 L) A &) = 1
[s]
0.020
0.016
0.012 i
- / Ea
0.008 .
i 9/ 0
0.004
- X
XX X
0-000 T T T T T T T T T T T T T
0 16 32 48 64 80 96 112 128[n]
!
B3: T[]V 1n) = Oy

[s]

0.100

0.080

0.060

0.040

0.020

o

20.0

16 32 48 64 80

96 112 128[n]

!
B4: ¢l F1n] € [n] = Opn]

16.0

12.0

8.0

S

16 32 48 64 80 96 112 128]n]

!
B5)+ L n) = 0]
[s]
0.300
0.240
0.180 -
0.120 /
0.060 //
0-000 ; T T T $ T T T $ T T T T T T Ea
0 16 32 48 64 80 96 112 128 [n]
B6: T A (0®$[n] [0 : n-2]) £X (1®0)%

Table 4.7: Checking Unsatisfiability via Fixed Solver

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS

[s]

0.010
0.008
0.006
0.004 - ——
0.002 -
XX X]
0.000 T T T T T T T T T T T T T T T
0 16 32 48 64 80 96 112 128 [n]
!
C1: zp95[n : 2n-1] = 25, [0 : n-1]
[s]
0.010
0.008 |
0.006
0.004
|
0.002
XX X]
0-000 i T T T T T T T T T T T T T T T
0 16 32 48 64 80 96 112 128[n]
!
C2: o®y31=Y5197y
[s]
0.200
0.160
0.120 ///;@
0.080 /////
0.040
) g//////,/éi/
0.000 54§§ﬁ3377’f% e SN
0 16 32 48 64 80 96 112 128[n]
!
C3: O ®z[p-2) = T[n-2)@0p

0.040

0.032

0.024

0.016

[s]

59

1RX X

16 32 48 64 80
!
C4: 21 AYpn) = 21n) XOR (221m)

96 11

2 128 [n]

20.0

16.0

12.0

£

8.0

4.0

Q.o =OT Y

1=—as

0.0

32 48 64 80

96 112

!
Lln) +[n)Y[n) = On)

128 [n]

5.00

4.00

3.00

2

2.00

1.00

ot =ROT Y

=1

0.00

X

0

16 32 48 64 80

96 112

C6:)+ [y = 71y XOR Y[y

Table 4.8: Satisfiable Equations via Fixed Solver

128 [n]

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 60

4.4 Introducing Heuristics for the Fixed Solver

The propagation of equality with OBDDs is an expensive task, for each merge operation might result in
a large number of replacements. This is the case in the examples C5 and C6 (page 59). In this section,
heuristics to optimize the propagation for the fixed solver are discussed. Sometimes it is advantageous to
process informations contained in OBDDs earlier. Since valid equations are detected right after canonization,
the advantages applies only to unsatisfiable and non-valid formulae. The idea of the heuristic is explained
using pigeon hole formulae.

4.4.1 The Pigeon Hole Principle

This classic scenario explains as follows. Consider a number n of pigeon holes and n + 1 pigeons. Now, it
is not feeding time and therefor every pigeon is supposed to be in a hole. Since there are not enough holes
for all the pigeons, at least one hole is occupied by more than one pigeon. This can be modeled in boolean
logic, e.g. via introducing (n + 1) - n propositional variables m;;, i = 1,...,n+ 1, j = 1,...,n, which are
interpreted as

m;; = true iff Pigeon #: is in Hole #j, i=1,....,n+1, j=1,...,n

On this basis, three boolean formulae are defined, each expressing one part of the scenario:

®; : Every pigeon is in at least one hole.
®, : In no hole there is more than one pigeon.
®; : No pigeon is in more than one hole.

If the number of holes n = 2, these formulae present as

O = (m11 Vmia) A (mar Vmas) A (mg1 Vmss)

Oy = (M1 = ~ma1 A —mgz1) A (M1 = =M1 A =mg1) A (Mg = =M1 A =Ma1)A
(M2 = —Maz A ~migz) A (Maz — =Mz A ~migz) A (mga — —miz A ~migg)

P3 = _'(mll A ’ITL12) A _'(m21 A m22) A —|(m31 A m32)

It is obvious that the formula ®; A 3 A @3 cannot be satisfied. Moreover, formula ®3 can be neglected, since
even if a pigeon manages to be in more than one hole at once, ®; A @, is necessarily false.

In spite of the clear intuition, this example is a challenge for mechanical proof systems. In 1985 Haken
showed, that there is an exponential lower bound in n for the number of steps any proof of unsatisfiability
needs, when using resolution as decision procedure (cf. [Hak85]).

4.4.2 Expressing Pigeon Hole in the Bit-Vector Theory

For each boolean variable m;;, a corresponding bit-vector Mijy] is introduced. Then the formulae ®;, ®,
and ®3 can be built as OBDDs by means of applying the boolean connectives on bit-vector terms of width
one. In the following, ®;, &5 and ®3 are assumed to be bit-vector OBDDs. Now there are several slightly
different ways to express the pigeon hole principle:

(I 128 22; = 11 ely
(IT) o 00 = 1yl
(IIT) &, A®AD; = 1
(IV) D AD, = 1y

In any case, the solver is expected to return false. The run-time of the fixed solver to show unsatisfiability
depends heavily on the kind of formalization, as shown in Table 4.9. The y-axis is scaled in a logarithmic
manner, the bottom line “0” is to read as “below one second”.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 61

[s] [s]
10000 1000
/I
1000 /
/ 4] 100] Pl
/| /
1 / 1
00 / { / :
/ [10 / Ld]
12 7 5 7
2 / 2
0 0
0 1 2 3 4 5 6 7 [#Holes 0 1 2 3 4 5 6 7 [#Holes
(I) P RP,P; L 1[1]®1[1]®1[1] (IT) &P, = 1[1]®1[1]
[s] [s]
10000 100000
10000 /
1000 i

1000 i
100 // /
/ J :

/ 4 100
== / [
10
5 /'/ 10 ,@
g 5
2 /) /
0 0
0 1 2 3 4 5 6 7 [#Holes] 0 1 2 3 4 5 6 7 [#Holes]
() & AG ARz =1) B A Dy =1y

Table 4.9: The Pigeon Hole Principle via the Fixed Solver [without Heuristic]

The performance of the fixed solver gets better from (I) to (IV) with a noticeable gap between (I)/(II) and
(TIT) /(TV). This is due to the fact that since the formulae ®; and ®, are both satisfiable, in (I) and (IT) the
unsatisfiability of the overall equation is detected no sooner than in phase 5. In examples (IIT) and (IV),
the OBDD alone canonizes to false, thus the algorithm aborts already after the chunk-solving in phase 2.
The information required to show unsatisfiability is the same in all cases. It is desirable to bring it in an
advantageous form.

4.4.3 The Idea: OBDD Melting

While processing example (I), at the beginning of phase 2 there are three calls to chunk-solve: ®4 < 1,

b, < 1;) and @3 < 1j1;. Each call yields a set of equations for all occurring original variables m;;,,, where

the right hand sides are OBDDs over fresh variables. This is not efficient, for the equality of three terms on
the right hand side for each Mij) has to be propagated. It seems to be more reasonable first to melt the

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS

10000

1000

100

o N OO

1000

100

oSN Ot O

[s]

/
7
/
Z
5 ==
/ ‘
;5 e
/ [
/
//
L
0 1 2 3 4 5 6 T [#Holes
(D & @P0®; = 1011y
[s]
/
/ £y
i
/
/
/
//
/
4

0 1 2 3 4 5 6 7 [#Hole]
(M) & ABABz L1,

62
[s]
10000
1000 /’/
|
100 /
/ ¢
/ (4]
10 /9
5 /
5 /
0 %
0 1 2 3 4 5 6 7 [#Holes]
(IT) D@Dy = 1)®1y
[s]
10000
1000 /6
/]
100 /
/
/
/ L4
10 7
5 7
5 /
0
0 1 2 3 4 5 6 7 [#Holes
(Iv) B A Dy =1y

Table 4.10: The Pigeon Hole Principle via the Fixed Solver [with Heuristic 1]

OBDDs by means of processing a conjunction instead of separate formulae:

! ! !
Py =1p), P2=1p, P3=1y

melt
—

!
(@1 =1 A (B2 =1p)) A (3= 1p))) =11y

Now chunk-solve is called only once and returns false. For satisfiable equations, there would be but one
right hand side for each variable instead of three. This leads to

Heuristic 1: Before phase 2, melt any OBDD equations that have at least one node mark in common.

In case of (I) and (II), all three respectively two OBDDs are melted. This leads to a far better performance
as displayed in Table 4.10.

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 63

[s] [s]
2.00 1.000
1.60 - 0.800
1.20 0.600 %
0.80 7 0.400 7 /
0.40 7 = 0.200 7 pd
0.00 M/z/ — = 0.000 m/ — —

0 16 32 48 64 80 96 112 128 ([n] 0 16 32 48 64 80 96 112 128 [n]

B6: I A (0®£L”[n] [0:n-2]) < (120)% B6: A (0®$[n] [0 : n-2]) = (120)*
[Heuristic 1] [Heuristic 2]

Table 4.11: Example B6, Processed With Two Different Heuristics

4.4.4 Refinement of the Heuristic

It is a mistake to assume that Heuristic1 is favorable in any case. Consider the previously processed example
B6: [, A (01®27,,[0 : n-2]) < (113®0p;)) 2 (cf. Table 4.7). This equation is unsatisfiable due to the least

significant position. The call to chunk-solve with x,[0 : 0] A Opy = 1y results in false. If Heuristic 1 is
applied, all n OBDD nodes are melted, before this false is detected. As seen in Table 4.11, this yields
a noticeable slowdown (the fixed solver without heuristics computed the longest example within 0.25 seconds).

This example suggests to restrict the melting of OBDDs to cases where the occurrence of node variables
overlaps to a stronger degree:

Heuristic 2: Before phase 2, melt any OBDD equations that have all node marks in common.

In example B6 this leads to a better performance, as observed in Table 4.11. Tt is slower than the computation
without heuristics, because any two of the n OBDD equations have to be checked regarding to the melting
condition of Heuristic 2.

Neither of the two extreme heuristics show an overall good performance. In particular, the examples C5
and C6 are not processed more efficiently. And, in both cases, there are examples where the fixed solver
performs noticeable worse than without melting at all. It is reasonable to expect a good heuristic for
melting somewhere in the middle. The best one I found is the following;:

Heuristic 3: Before phase 2, melt any two OBDD equations OBDD; and OBDD., if
|vars(OBDD:)| + |vars(OBDD,)| < 2.4 - |vars(OBDD;) N vars(OBDD,)|

In Heuristic 2, the factor would be 2 instead of 2.4 and in Heuristic 1 it would be oo, where co - 0:=0. It
was narrowed down while using factors 4, 2.5, 2.4, 2.3 and 2.2.

With high probability, for any factor there exist examples where the behavior is sub-optimal. However,
2.4 resulted for the examples C5 and C6 in a not overwhelming but noticeable speed-up, as displayed in
Table 4.12. At the highest width processed, Heuristic 3 melted 32 equations to 3 OBDDs in example C5
(respectively 64 equations to 4 OBDDs in example C6).

CHAPTER 4. SOLVING FIXED-SIZED BIT-VECTOR EQUATIONS 64

[s] [s]
10000 10000
8000 : 8000 :
i _l_ _l | _l
6000 1 y 6000 3
L) * / |
B ‘) h B h
4000 /] B 4000 b
2000 2000 /
0 Q T $ T T T T T T T T 0 7‘M T T T $ T T T T T T
0 16 32 48 64 80 96 112 128 [n] 0 16 32 48 64 80 96 112 128 [n]
! !
Cs: T(n) +(n1Y[n) = On) C6: 2y +1n)y(n) = Tn) XOR Y[y

Table 4.12: Satisfiable but not Valid Examples [with Heuristic 3]

A Short Summary on Heuristics

The usage of heuristics together with the fixed solver seems to be crucial in order to avoid a break-down in
many pathological cases. Although it is not likely that an overall optimal heuristic for melting exists, the
processed examples suggest to apply rather a mediocre one than none at all. The price might be a slow-down
in some simple examples, but this is not a high price if the alternative is a gambling whether the system will
ever respond again.

There might be other places where it is reasonable to apply heuristics. The order of chunk-solving and
propagation are promising points, for both offer the chance to detect unsatisfiability early. However, these
considerations were not followed in this thesis.

4.5 Looking Back at Fixed Size

Though any of the followed approaches has its justification, there was always a pathologic example exceeding
a reasonable respond time. Though most of these unwanted behaviors could be patched somehow, there
does not, seem to be a conceptually clean way to gain satisfying efficiency. Having spent quite some time in
consideration of alternatives in the past two year, the author feels inclined to summarize this in the following
estimation:

It is not likely, that there is a simple concept that provides an efficient solver for the theory of
bit-vectors, even for fized size. In order to match the needs of industrially sized applications,
sophisticated strategies and detection of special cases are required.

Chapter 5

Beyond Fixed Size

The only way to discover the limits of the possible is to go
beyond them into the impossible.

(Arthur C. Clarke, Technology and the Future)

5.1 A Solver for Variable Width: Split-Chop

This section defines an extension of the reduced chopper algorithm from section 4.2.2 for solving bit-vector
equations of variable width. In order to cope with the non-convex properties, a concept of context splits in
connection with reasoning about integer terms is defined.

5.1.1 Reasoning about Integers

The Definition 2.13 of the frame solver implies that reasoning on integer constraints is required. The following
example shows that it is not sufficient to express equalities (like width(t) = width(u)) and inequalities (like
integer 1 <1).

Example 5.1
o ®© 1;®@0py ¢
1®0p ® zp

Here, [is an integer variable. It is easy to see that this equation is satisfiable, if and only if [is even. This
can be expressed by the constraint % -l e 7.

Definition 5.1 [Closed Sets of Integer Constraints]

Let L:={ly,...,l;} denote the set of integer variables. The set of integer numbers is denoted by Z. An
integer term x is a term that can be constructed from L, rational numbers, addition, multiplication by a
rational number, operations DIV, MOD and the application of the operations max and min on an arbitrary
number of integer terms. Also, there exist symbols -co and oo which are defined as -0co := max), co := min ().
A set U of integer constraints is a quadruple (Leq, Bet, Map, Int), where

e £eq is a set of inequalities on integer terms,
e DBet is a collection of inequalities of the form x; < I; < x7,
e Map is a set of tuples (I; — x;); none of the I; in Map occurs in Leq or Int,

e Jntis a collection of integer terms; it is understood that each term is required to evaluate to an integer.

65

CHAPTER 5. BEYOND FIXED SIZE 66

¥ is called closed, if

e No redundant information is contained in £eq, Bet or Int; e.g. the inequality 1 < [is subsumed by
the inequality 2 <[and therefore 1 <[should be omitted,

e For every variable [; € L, there exists exactly one inequality x; < [; < Xi+ € Bet,

e U is satisfiable, i.e. there exists an interpretation Z: L — Z such that Z =V (I; — x;) € Map : I; = x;

and Z |= Leq A BetA A x € Z.
XEInt
J

The shape of ¥ is motivated by a recursive function int-close computing an equivalent but closed set for a
given ¥. The idea is similar to the Fourier-Motzkin elimination method (cf. [Sch86, TH]).

int-close(£eq™, Int)
Ir vars(Leq*) =0
THEN IF £eq” = L THEN RETURN false
ELSE RETURN ((,0,0,0)
ENDIF
ELSE LET | € vars(Leq™)
IN Neg:={x | there is an ineq € Leq* with ineq < x <[}
Pos := {x | there is an ineq € Leq" with ineq & 1 < x}

. (Leq™ \ {ineq |1 € ineq})U
(Leq, Bet, Map, Int) := int-close ({neg < pos | neg € Neg., pos € Pos) Jnt
Int « IntuU {I}

Bet +— Bet U {max(Neg) <1 < min(Pos)}
WHILE 38 € Bet: (LeqABA N xX€Z) = l=x Do
XETInt
REPLACE [IN £eq, Int BY X
Map « PMap U {(— x1}
On
IF LeqABetA A x €Z = L THEN RETURN false
XETInt
ELSE RETURN (Leq,Bet,Map,Int)

ENDIF

ENDIF

5.1.2 Splitting Context: The Solver Split-Chop

The solver for variable width presented now—in the following referred to as split-chop or short Syp—is
described via a straight-forward generalization of an equational transformation system (cf. Definition 4.4).
With each application of an equational transformation rule, not only the set of bit-vector equations Y but
also the integer constraints ¥ are modified. A pair (T, ¥) that is not terminal (with respect to Sg) is referred
to as a context. If one of the rules (1), (1)* matches an equation in T, the respective context is split to
several cases. Each case yields a new context that is processed by the split-chop algorithm.

A split-chop computation starting with #; = t5 is sketched as follows.

CHAPTER 5. BEYOND FIXED SIZE

67

CASES Prn] = (g [0 : 0 — 1])
n<m — a(g[n:m —1))Qu =t
i) = G [0 = 2 = 1]®qy)[n 2 m — 1]
(1) Din)®t = qm]OU, n=m — { f[:”]u:q[m] }
Qim] = (P[0 : m — 1])
n>m — apm:n—1)et=u
ENDCASES Pn] = P[0 2 m =]@ppnyfm = n — 1]
B . 1=i41
({:L”[n] [l : l] = Q[g-q] *7¢ } ,)
o %-(l—i-l-l)eﬁnt
(O wpli: A=k, T - -
[n]L® - Y=ty <k T li 1] = ag-it1)MoD(k-i)) @ ‘ ‘
(B{(i=1-1)MOD(k-1)] @[(1-i-+ 1) MOD(k-1))) T DPIVE=D)
(1 —i+41)MOD (k—1i)) >0]
(2) C[n] = Cl[n] y c 75 c — FAIL
(3) t=t — {}
R e N e
qg=1u q=1u
_ p=a
o) - {q=a
q=r
r=a
o {i5) - {120
q=p qg=a
p=t p=t
o {5 - {120}
(8) c=t, t#const — {t=c}
Figure 5.1: The Equational Transformation System Sy for Variable Width
1. Define a set Y := {t; =t2} U init-CS(t; = t2) according to Definition 4.5.
2. Compute a set ¥ of integer constraints based on the term structure of ¢; = to.
3. Compute the closure of ¥ via int-close; if it fails, abort this context with false.
4. Start the equational transformation system Sy in Figure 5.1 on the context (T, ¥).
5. If no rule is applicable, the computation in this branch terminates with the frame (T, ¥) — see Defini-
tion 2.13.
6. If rule (1) or rule (1)* encounters ambiguities due to the variable term width, perform a case split and
generate pairs (Y1, Pq),..., (T, Ty).
7. With each of the pairs (T,., ¥,,), » = 1,..., k, continue the computation at point 3.

CHAPTER 5. BEYOND FIXED SIZE 68

Example 5.2 [cf. Example 2.6]
Consider the equation

!
T[n) @0[1] DY [m) = 22)@1[1)@w]z)

where n and m are integer variables. Set ¥:=({n+1+4+m <5, 5 <n+1+m},0,0,0). The procedure
int-close results in ¥ = (§, {1 <n < 3},{(m — 4—n)},{n,4 —n}). Next, the equational transformation rule
(1) tries to match the leftmost chunks x,) and z[5). This leads to the case-split

int-close

(a) n<2 "N ne1l;me 3

(b) n=2 "8 n2;me 2 2 false

int-close

(c) n>2 n—3;me1

The split-chop algorithm (cf. Table 5.1) in combination with int-close terminates with the two frames

,

Tm) = anp

Ym = 1p®bpy, (Q’{l <n< 4}{n S 1,}{1’ }>
2{2] = a[1]®0[1],)) 1 S m S 4) m = 3 N 3 ,
(w2 = bpy)
(2 = ap®1py),)

Ym) = by, (0{1 <n < 4,}{n»—>3,}{3,})
2] =02 P11 <m< 4 [Pm o= 1 [1
(w2 = Opy®bp

Thus, all possible solutions are covered.

5.1.3 The Context Split Rule

In order to explain the context split applied in rule (1)*, Example 5.1 is processed via the split-chop algorithm.
The application of the equational transformation rules in Figure 5.1 works as follows:

e Start with context (T,) := ({m[l]®1[1]®0[1] = 11®0@z }, ({1 < l},(Z),Q),(Z))).
o int-close yields ¥ + (§,{1 <1 < o0},0,{l})

e Rule (1) matches with leftmost chunks x; and 1p;;. Since [is variable, the context (Y, W) is split to
integer constraints ¥1 :=V0 U {l <1}, U=V U{l =1} and T3:=T U {l > 1}.

e Context (T, %) yields false immediately, since 1 < [is violated. The context (T, ¥s) yields false
after a few rule applications, for z[;;® 1[1)®0(y L 1)®0 @[] triggers rule (2).

e In context (Y, ¥3), the equations {z[;[0:0] =1, z;[l: 1 - 1]@1;®0p) = 0 ®z);} are added to

Y. In an attempt to match the second equation with rule (1), ¥3;, W35 and P33 are generated with
additional constraints [< 2, [=2 and [> 2 respectively.

o U3 yields false, U3, terminates with the frame ({zpy = 111®0(y}, (0,{2 <1 <2}, {l — 2},{2})).

e In context (Y3, ¥33), the rule (1)* matches equation x;[2 : I — 1] = z;[0 : I — 3]. There is a case split,
according to whether | MOD 2=0. Contexts (Y33, ¥331) and (Y33, P335) are generated, where the
terms % - [respectively I MOD 2 =1 are added to W33, respectively Wsss.

CHAPTER 5. BEYOND FIXED SIZE 69

e To Y331, the equation zp = (a[g])% is added, thus terminating in a frame (x[l] = (1[1]®0[1])%, (0,{3 <
[<oo},0,{3-1}))

e To Y33z, the equation zp) = by)@(dy®bpy) =
o[l = 1:1— 1] = Op, this context yields a false.

is added. Together with =p[0:0]=1j; and

Thus the split-chop algorithm terminates with the set of non-false frames

{({ﬂf[z] = 1®0p1}, (0,{2 <1< 25, {10 23,{2)), (2 = (1@0p) =, (0, {3 < 1 < 00}, 0, {2 - l}))}

A short inspection confirms that all possible solutions are represented.

5.1.4 Experiments

The split-chop algorithm has been implemented in Allegro Common Lisp. However, by the end of
this diploma thesis it did not reach a state of high trustworthiness. At the world wide web site
http://wuw.informatik.uni-ulm.de/ki/Bitvector/ a prototype version can be obtained.

5.2 Semaphore

The last approach explained an intuitive way towards solving large sub-sections of the bit-vector theory with
variable width. Since the split-chop algorithm does not allow boolean operations or bit-vector arithmetic,
the usability in practical applications is limited. Moreover, an extension of split-chop to boolean operations
is necessarily incomplete (cf. Non-Existence Theorem 3.7).

It is to be mentioned that in the same time but independently, Bjorner and Pichora [BP98] presented
an algorithm that allows to solve several special cases of bit-vector equations with variable width. More
precisely, a parametrized term like x[,n4 can be processed symbolically. Though a close comparison with
the approach presented here is still outstanding, the split-chop algorithm allows a greater degree of freedom.
For example, variable extractions can be processed by means of a simple case-split on the term structure in
the beginning,.

Thus, the concept presented here is prototypic. General methods for processing boolean operations and
arithmetic for variable width are still left to be desired. In the present form it is to expect that for many
pathologic examples the split-chop algorithm runs—regrettably like the author of this diploma thesis—out
of time.

Chapter 6

Conclusion

All human progress involves, as it first condition,
the willingness of the pioneer to make a fool of himself.

(Bernard Shaw)

This diploma thesis contains a number of insights on solving bit-vector equations both from a theoretical
and practical point of view. That might be grouped as follows.

Understanding the Complexity of Bit-Vectors

Though the “N P-completeness” of some equational bit-vector languages is not surprising, the correlation in
the extension of theories as displayed in Figure 2.3 is better understood now. Moreover, the Quantification
Lemma 2.9 explains that solving is far more a task than this chart might suggest. In most non-trivial
extensions, a call to a solver can be used to decide PSPAC E-hard problems (cf. section 2.5.3).

As expected, sufficient enrichment of the bit-vector theory leads to unsolvable problems. With the Non-
Existence Theorem 3.7, at first a proof succeeded. Though bit-vectors are a simple data structure, they
should have lost their image as “trivial” by now.

Exploration of Solving Approaches

We have presented three approaches for solving fixed-sized bit-vector terms in chapter 4. Their actual
implementation on the one hand confirms the idea an on the other hand reveals weak performance in several
pathologic cases. The fixed solver together with heuristics patches most of these, thus elaborating the
extensive usage of OBDDs. A concept for solving non-fixed size bit-vector equations was given via the
split-chop algorithm in section 5.1.

The vexing point is that in any approach simple examples were found that lead to horrendous response
time. This suggests that solving bit-vector theories with a rich set of operators can not be performed by a
simple concept, but rather by means of a sophisticated strategy and heuristics. If these observations are not
fundamentally misleading, this is bad news. First, because the development of an efficient solver requires a
lot of tedious work and second, since the trustworthiness of a complicated solving algorithm tends to be low.
In the context of hardware verification, a doubtful mechanization is less than desirable.

Further Work

Due to the huge variety and surprising depth, not all of the topics centering around the problem of solving
bit-vector equations could be discussed exhaustively. In particular, the following tasks seem to offer promising
aspects for further investigation.

70

CHAPTER 6. CONCLUSION 71

First, research the inherent complexity of solving more throughoutly. The characterization via the com-
plexity class of the language of satisfiable equations seems to be misleading, for the severity of solving is
not captured accurately. Thus a more expressive notion of complexity is desired. Moreover, the detection of
decidable fragments is far from being complete. It is conjectured that the theory of bit-vectors with variable
width and variable extractions is decidable via a combination of Makanin’s algorithms and an exhaustive
but finite case-split on the term structure.

Second, develop an efficient “master solving algorithm” for fixed size. This could follow the ideas of
the fixed solver algorithm, but moreover use W S1S encoding or other whenever it is considered to be
advantageous. Without doubt, a lot of experiments are needed to draw reasonable decisions here. In
addition, it is crucial to be specific in the conceptual details in order to enhance trustworthiness.

Third, the split-chop algorithm from chapter 5 should be implemented into a non-convex framework
(STeP [BBC*] might be an interesting choice). Use reasoning about integers contained there instead of
implementing a separated method for computing the closure on integer constraints. Then, add boolean
operations and arithmetic.

The author is not optimistic, that these topics will be covered in short a time, let alone by his further work.
After roughly two years of thinking about bit-vectors, he needs a break.

Appendix A

Former Results at the SRI

The results displayed here originate from the author’s work at the SRI in autumn 1996. They were yet
unpublished and appear here in the “original” form, excuse the typos. Only the notation was updated to
avoid confusion.

A.1 An NP-complete Problem
The Problem BVEVE-Solvability

Consider the theory of bitvectors with fixed (finite nonzero) size and the operations .®. (composition) and
[j : 7] (extraction). i and j are allowed to be cardinal variables. Also, there exist constants of arbitrary but
fixed length n, further denoted as Op,; and -1,

Let t; and ¢, be terms over such bitvectors. The problem to decide whether the there exists a sollution to the
equation t; = ts is called BVEVE-Solvability (BitVector Equation with Variables in Extraction Solvability).

Claim
BVEVE-Solvability is NP-complete.

Proof:
a) BVEVE-Solvability € NP

One can guess a polynomial-sized sollution (t.i. polynomial in the term-length and the maximum length of
the used bitvector variables) and check if the equation holds.

b) BVVE-SAT is NP-hard (Reduction 3-CNF-SAT <,, BVEVE-Solvability)

Let F = (Li1 V LiaV Liz) A .. A (Lin1 V Lo Vﬁg) be a boolean formula in 3-CNF over variables
z; € Var = {x1,...,xp}. L;; are literals in Var U Var, (i € {1,...,m}, j € {1,2,3}).

For each z; € Var introduce a bitvector variable a; of length 3 and integer-variables r;, s;. Additionally, we
need m bitvector variables b; of length 3 and and integer variables ¢; for padding.

Let ;= (air;i:2])®(a;[0: s])
g(wi) = a;f0: 5] Wie{l,..,n}
9(@) = ailr;:2]
Gj = g(Lj1)®g(Lj2)®g(Ljs)®(b;[0 : £5]) Vj € {1,...,m}

72

APPENDIX A. FORMER RESULTS AT THE SRI 73

Now define the reduction f as follows:

a1R...Q0ay ® b1 ®...Qby, ® ©1&...0pn ® 1[1]®G1®1[1]®...®1[1]®Gm |
f(F) = 0[3®...00[31 ® 03®...203 ®@ 03®...003 ® 1®0[7®1|®...0111@07 —

The equation f(F) is solvable, if (and only if) all variables a; and b; equal 0-valued bitvectors; that means
also, that each ¢; has to be of the length 3 to match the }ﬁ -position. This can only be achieved if
1

r; = s; + 1 for each 4, thus r; € {1,2}. Consider z; = true equivalent to r; = 1 (and x; = false equivalent
to r; = 2). In order to match the lower term, each G; has to be of the length 7. The length of b;[0 : ¢;] is
in {1,2, 3}, thus at least one of the g(L;;) in each clause has to be of the length two. This is equivalent to
the notion that one of the literals L;; evalueates to true.

Thus,

F is satisfiable < there exists a mapping a : Var — {true, false} with a(F) = true & there exists a
mapping 3 : {ry, s;,tjli =1,..,n;5 =1,..,m} — N such that f(F) is solvable.

Q.£D

APPENDIX A. FORMER RESULTS AT THE SRI 74

A.2 An NP-hard Problem
The Problem B V®,bv e Cn—Solvability

Consider the theory of bitvectors with variable size and the operation .®. (composition). A bitvector
variable is denoted to be of the type bvec,, where n is either a nonzero cardinal or a variable. The theory
contains constants of arbitrary but fixed length m, further denoted as Op,,; and -1,

Let t; and t» be terms in this theory. The problem to decide whether the there exists a sollution of the
equation t; = t, is called BV®7bvecn—Solvability.

Claim
BV, bvec, -Solvability is NP-hard.

Proof: (Reduction 3-CNF-SAT <, BV, ;.. -Solvability)

Let F = (Li1 V LiaV Liz) A .. A (Lin1 V Lo Vﬁg) be a boolean formula in 3-CNF over variables
z; € Var = {x1,...,xn}. Ly; are literals in Var U Var, i € {1,...,m}, j € {1,2,3}.

For each x; € Var introduce two bitvector variables a(? : bvecyy,,) and b . bvecyy,) of unknown size. Also
we need m pairs of variables ¢(9) : bvec, 1, d9 : bvec[s;] for padding.

Let Pi = 1®@a @bl Vie{l,..,n}
(o = 1[1]®C(j)®d(j) Vie{l,..,m}
g(xz) = al®)
9(T7) = p() Vie{l,..,n}
G = g(Lj)®g(Lj2)®g(L;3)0c? Vje{l,..,m}
] = M. .2cdP)ob) . @bt @M. .0c™) d) ®..0d5m)

Now define the reduction f as follows:

F(F) .:{ 0p@¥ ® P19...0pn ® V1®...0Ym R1® G1Ol®...0Gm L
’ U0n ® 1q®03.--11®03 ® 1j®0))... 111®0y R11® 0[7®111®...00(;

This equation is solvable, if (and only if) ¥ equals a composition of 0-valued bitvectors, because the 0y is
propagated to every cell of .

Therefore each sum p; + ¢; must equal 3 and each sum r; + s; must equal 4. One bitvector of the pair
a?, b has the length 2, the other one is of the length 1. Consider z; = true equivalent to ||a(?|| = 2
(and x; = false equivalent to ||a(?|| = 1). For there are no zero length bitvectors allowed, each ||c/)|| can
be chosen between 1 and 3. Every G; has to reach the length 7, this is equivalent to the notion that in each
disjunction of the 3-CNF-formula F' at least one literal evaluates to true.

Thus,
F is satisfiable < there exists a mapping a : Var — {true, false} with a(F) = true & there exists a
mapping 3 : {pi,q;,r;,s;li =1,..,n;5 =1,..,m} — N such that f(F) is solvable.

Q.ED

Remark: .
The question if BV, bvecn—Solvability € NP is still open. There seems to be no hint that for every solvable
equation exists a polynomial sized (in the input, that is) sollution.

APPENDIX A. FORMER RESULTS AT THE SRI 75

A.3 An Unsolvable Problem
The Problem 3BV,-Solvability

Consider the theory of bitvectors with nonzero size and the operations .®. (composition) and .[j:]
(extraction). ¢ and j are allowed to be cardinal variables. Also, there exist constants of arbitrary but fixed
length ¢, further denoted as O, and 1f.

Additional, there exists one special cardinal variable n, on which the terms can be dependent on, t.i. the

n
cardinal variables can be indexed from 1 through to n and we allow an operation (¥), which is a composition
i=1
m
of n arguments. (Note that in the following) is not really a new operation, for m will be a fized number.)
i=1
Let t, and u,, be bitvector-terms dependent on n. The problem to decide whether there exists a sollution
to the equation 3n : t, = w, is called IBV},;-Solvability.

Claim
ABV}, -Solvability is undecidable.

Proof: (Reduction Post’s correspondence problem < 3BV},,j-Solvability)

Let P = {(a1,b1),..., (@m,bm)}, m > 1 be an instance of Post’s correspondence problem, a;,b; € X+.

Basically, we will construct two X)-compositions which match if (and only if) there is a corresponding
i=1

sequence iy, ..., i, that solves the correspondence problem (t.i. a;, a;, ---a;, = b;,bi,---b;).

Let 0 ¥ — ¥’ = {0,1}" be a mapping from the basic alphabet into an artifical one, where

v = maz(3,[log: ||Z]|]). ¢* : £* = ¥'* is defined according to this. Let w := maz{|lo*(a;)| : i =

1,.,myu{loe*(b;)|:i=1,..,m}.

Let pu := [logam], the binary length needed to store the information, which pair (a;,b;) is chosen. Thus
let 7 : {1,...,m} — {0y, 1;1;}* be the binary encoding of these numbers, represented in compositions of
bitvector constants.

We introduce the following abbreviations:

Ap = zg(111®0(16%(as)|—21®1) @ l[u])

Aconse = ®(o*(a;) ® T(i))
izl

By = @(1[1]®0H0*(bi)*2]®1[1] & 1[”])

Beoss 1= ®(" (bi) ® T(i))
)

Q = @ Opmas(o* @)Ll o) +4]

We also need some (indexed) integer variables to express which pair is chosen. I; and r; will be the marker
for the first argument (a), I} and r} accordingly to the second one. Also, we introduce some ’puffers’, namely
¢i,di, e; and ¢}, d}, e} to avoid arithmetic operations. It will yield that for every i € {1,..,n}:

ci=1li—r; di=r;—1 e =ri— [

=17 & =r,—1 ef=r—p }(*)
To make sure, that [;,r; always extract a valid pair-component out of Acums:(respectively I}, 7! from Bas:),
we define:

APPENDIX A. FORMER RESULTS AT THE SRI

76

d, = ® AO[Ti : l,] ‘I>;,L = ® BO[TI I
i=1 i=1
T, = Q® (1[1]®0[w] [0: Ci]®1[1]) o= Q® (1[1]®0[w] [2: c§]®1[1])

i=1

To enforce the 'right order’ of the segments, we will match

A,’;‘ = @ Acwonse[€i @] and AB = & Buwsle! : d}]
i=1 i=1
To make shure that (x) yields, we introduce
n
L, = ®(Q[Tt lz] ®1[1]® Q(Tzadz) ®1[1]® Q[e,d,] ®1[1])
i=1
Ay = ® (Q[O s el ®1[1]® 0[2] ®1[1]® 0[,,] ®1[1])
i=1
U= @00 elye hd) elye Od:d] oly)
i=1
n
A= ®(00:d] elge 0 ®lge 0y ®ly)
i=1
Now define the reduction f as follows:
F'n, & F'In & (I)n & ¢In & A}? &® ®ACHDDSE[ri : lz] ,
f(p) = : / . o . =
An & An & ‘I’n & lI!n & An & ®BCHDDSE[ri : ll]

=1

It is obvious, that P has a sollution, if (and only if) f(P) is solvable.

Q.ED

Appendix B

Complexity Theory

B.1 3CNF-TQBF is PSPACFE-complete

This fact is probably not new and even less surprising.

Nevertheless a proof is included here, for the common literature does not seem to refer to this detail. The
idea of this proof was taken from the lecture “Algorithmen und Kalkile”, taught by Prof. Dr. Uwe Schéning
in the Summer Term 1996 at the University of Ulm and originally showed that 3C NF-SAT is N P-complete.

Let ®:=Qx1- Qunan.(l11 Vg Viig) A... /_(lm1 V lm2 V ln3) be a fully quantified boolean formula in
3-conjunctive-normal-form (3CNF), l;; € VUV, V={z1,...,zp}, Qx € {¥,3},i=1,...m, j = 1,2,3,
k=1,...,n. Then the language 3CN F-TQBF is defined as

3CNF-TQBF :={®| = &}.

Claim:
3CNF-TQBF is PSPAC E-complete.

Proof: (Reduction TQBF <,, 3CNF-TQBF)

Let ®:=Qz1. - Qpxp.F be a fully quantified boolean formula with arbitrary matrix F' over variables
V:={z1,...,2,} and connectives A, V and =. F' can be transformed in polynomial time into an equivalent
formula F' in Negation Normal Form (NNF') where negations only occur directly at variables via

“(aAB) = -aV g
“(aVp) = —~aAN-f
a — QA

A transformation of F' into a formula 1::' in 3CNF is defined as follows:
Let T be the tree representation of F' where each node is marked with a A or an V and each leaf is in
VUV. Let orop € {A,V} be the root node mark. For each non-leaf introduce a fresh boolean variable y;,
i =1,...,k. Tj is transformed into

Fi= yi AN [y1 ¢ (y20r0p ys)]
A [y2 & (yaoys)]
N Yk € gy o k2]

7

APPENDIX B. COMPLEXITY THEORY 78

The arguments of o € {A,V} are the left and right subtree of the corresponding node. The transformation
terminates at leaf level, lp1,l2 € VUV.
Each of the expressions [..] is equivalent to three CNF clauses:

(yi = aoB)A(aof = y;)

Ui V(o B)) A(=(aofB)Vy:) _

(i Va)o@iVB)A((yiVa)(y: v 3)) B

Iro=A THEN (giVa)A@F VB Ay VaVvps)
ELse (i VaVp) Ay vVa)A(y: vV B3)

lyi & (ao)]

ENDIF

Let ¢ : V — {true,false} and ¢ : {y;,...yr} — {true,false} be assignments of variables. Then

oEF if 4ok F

A 1) assigns each value of y; according to ¢

In particular, for each ¢ with ¢ F' there ezists a mapping ¢ resulting in a model of F, namely the one
assigning y; — eval(Node;). Vice versa, for a ¢' [£ F there is no ¢ with ¢',¢ |= F, for (x) cannot be
satisfied. This leads to the statement

Qi1 QuanF = Quzr.- - Qnan Iy Iy F

Thus, each quantified boolean formula can be transformed in polynomial time into an equivalent quantified
boolean formula in 3C N F'. This yields the reduction. 0

APPENDIX B. COMPLEXITY THEORY 79

B.2 BVg [.;-Solvability is N P-complete

This fact was also recorded in autum 1996 at the SRI. The original (and less elegant) version of the proof
is displayed in Appendiz A.1.

Let BV j;.;) be the theory of fixed-sized bit-vectors with composition and variable extraction. Assume
the equation ¢ =wu in this theory contains the variables V=, :=vars(t) U vars(u) = {vy,...,v;}. Define
Li—,-SAT as

Li—y-SAT := {t = u|There exists an assignment « of V;—,, with a =t = u}

Claim:

Li—y-SAT is N P-complete.
Proof: (Reduction from 3CNF-SAT)
(1.) Li=,-SAT € NP

Given an equation ¢ = u. Then nondeterministically guess aa assignment « : vy — a1 A -+ Avg — ay of all

variables v; € Vi—y, i = 1,..., k. Since there are upper bounds for each integer variable, |a| is polynomial
in |t =u| (assume the length information is given unary). It is also a polynomial task to check whether
afEt=u.

(2.) Li—y-SAT is N P-hard.
Let @ := (11 VI12V13) A+ - - A(l1 Vim2 Vins) be a boolean formula in 3C N F over variables V = {z1,...,z,},

lipeVUuV,j=1,...,m,p=1,2,3.

For each z; introduce an integer variable m; (i=1,...,n) and for each clause an integer variable ¢;,
(j=1,...,m). m; is designed to be 0 if x; is assigned to false and 1 if z; is set true.
Define

(ﬁ(:ﬂz) = (0[1]®1[1]) [mz : mz]

o(z;) = (1[1]®0[1])[mi 2 my)

Translate ® [in polynomial time] into the bit-vector equation

_ | (olin)@d(liz)@d(lz))[er :ei] ® -+ @ (lm1)@P(lm2)@P(Im3))[cm : cm] L
R I RN ol 1)

The equation f(®) has a solution iff every term ¢(l;1)®¢(lj2)®¢(lj3), j = 1,...,m contains at least one 1fyj.
This is the case, iff at least one of the ¢(I;,) = 1[1) which is equivalent to I, = true. Thus, ® is satisfiable
iff there exists a solution for f(®) and ® € 3CNF-SAT iff f(®) € L;—,-SAT, completing the reduction. .

Appendix C

Source Codes

All files were implemented in Allegro Common Lisp 4.3. It is heavily recommended to use an Allegro
Lisp dialect in order to process them without further problems. The source-codes can be obtained at
http://www.informatik.uni-ulm.de/ki/Bitvector/

C.1 Solve via Mona

Diploma Thesis:
»Solving Bit-Vector Equations (in-package user)
iii - A Decision Procedure for Hardware Verifikation”

A
;;; Constants to Customize
University of Ulm S
i Faculty for Computer Science (Informatik)

i;; AI Department (Abteilung fuer k”unstliche Intelligenz) (defconstant *home-directory™ ” /home/hiwi/moeller/”)

ii; Supervising Professor: F. von Henke

(defconstant *mona-local-directory-path*
(CLOS::string-append *home-directory* "da/etc/mona/”))

(defconstant *mona-call-exe* ”/usr/local/share/ai-systems/mona/mona-
1.1/mona”)

(1) Tnstall Mona Version 1.1 Sy R S S R R

I [to optain eg. at http://www.brics.dk/~“mona/index.html |

;i (2) Fetch also the files bvec_structures.cl and bvec.arith.cl (defconstant *mona-input-file*

5 [to optain eg. at (CLOS::string-append *mona-local-directory-path*

B http://www.informatik.uni-ulm.de/ki/Bitvector/] “mona_input_file.mona”))

;i (3) Create a local directory, where Mona can store the (defconstant *mona-output-file®

5 input-and output files (e.g. mona/) (CLOS::string-append *mona-local-directory-path*

;i (4) Modify the constants "mona_output_file.txt”))

T *home-directory* *mona-local-directory-path* *mona-call-exe* (defconstant *mona-result-file®

5 according to your local settings (CLOS::string-append *mona-local-directory-path*

;i (5) Load common lisp files in this order “mona_result_file.txt”))

I bvec_structure.cl (defconstant *full-adder-file*

I bvec.arith.cl (CLOS::string-append *mona-local-directory-path*

5 check_via_mona.cl "fulladder.mona”))

5 [compilation recommended]

;i (6) Start >> Solver << with (defconstant *allow-complement* nil)

i (solve-via-mona ’(bv-equal <term-1> <term-2>))

5 <term-1> and <term-2> are assumed to be canonized(!) (defconstant *negate® nil)

i An example for term structure is given in section * Examples * ;i *negate®* = nil -> If the equation is a tautology,

I NOTES: i Mona will reply ’valid’

5 (a) The notation is NOT identic with the one in the Diploma Thesis; ;;; Else Mona will present a counterexample

5 Due to an (obsolete) design decision, the least significant
bit is at the rightmost position and concatenations are the
5 other way round as a consequence;

HH [Here, the automaton is a encoding
B of the SOLUTION]

i eg. (x{4} o y{4}) ~ (1,0) = y{4} ~ (1,0) i1 *negate* = t -> If the equation is unsatisfiable
i (b) The finite automaton is not put out as a default; s Mona will reply 'valid’
i if the directive ”-w” is added to the call to the mona-program o Else Mona will present a counterexample

o (cf. function call-mona-program), the automaton is put to file [T
i mona-output_file.txt
N The function solve-via-mona returns one of the symbols

T TAUTOLOGY iff the equation is a tautology (defun solve-via-mona (bv-eq &optional (trigger-mona-on nil)
T UNSATISFIABLE iff the equation is unsatisfiable (trigger-mona-off nil))

T COUNTEREXAMPLE if there is a model, ;; Returns ’'tautology iff the equation is a tautology

o but the formula is not a tautology o ‘unsatisfiable iff the equation is unsatisfiable

o ERROR if an error occurred i ’counterexample if there is a model,

i i but the formula is not a tautology
I AR T LR AL i ‘errir if the mona-output-file is not as expected
;; General Remarks: This implementation realizes (ifassert (and (consp bv-eq)

;i 'Solving’ fixed bv equations via a transformation to S1S (eq (car bv-eq) ’bv-equal)))

i; And creating an output which can be processed with MONA 1.1 (ifassert (is-fixed-arith-bool-bv? (cadr bv-eq)))

;; Strictly speaking, this is not an implementation of a solver (ifassert (is-fixed-arith-bool-bv? (cadr bv-eq)))

;; but a test for TAUTOLOGY or UNSATISFIABILITY; (let* ((terml (rewrite-boolean-logic-AON (cadr bv-eq)))

:i This can be used to generate a solving algorithm, by means of (term?2 (rewrite-boolean-logic-AON (caddr bv-eq)))

;; Repeatedly replace bits of variables with constants; (width (arith-bool-bv-length term1)))

i; [See Diploma Thesis for detailed description] ;; 1! Assume canonized terms !!!

i (labels ((get-sub-structures (recog?)

i The big revenue of this approach is, that it allows to check (remove-duplicates
;; FIXED SIZE BITVECTOR EQUATIONS WITH LINEAR ARITHMETIC (append (all-recognized-in-arith-bool-bv-term term1 recog?)
;i AND LOGIC (all-recognized-in-arith-bool-bv-term term?2 recog?))
i for validity (which is the most common usage of decision procedures) ' TEST #’equal)))

;; The big drawback is the sometimes horrendous run-time

80

APPENDIX C. SOURCE CODES

(let™ ((vars (sort
(get-sub-structures #’(lambda (x) (rec-bv-var? x)))
#'(lambda (x y)
(string< (bv-var-name x)
(bv-var-name y)))))
i35 (var-names (mapcar v-var-name vars
b
(var-alen (mapear #’(lambda (x)
’(,(bv-var-name x) . ,(bv-var-length x)))
vars))
(var-len (loop for pair in var-alen collect (cdr pair)))
(var-fnames (mapcar #’(lambda (x)
(CLOS ::string-append
VAR
(princ-to-string (bv-var-name x))
(princ-to-string (bv-var-length x))))
vars))
is; (var-assoc (pairlis var-len var-fnames))
(constants (get-sub-structures
#’(lambda (x) (rec-bv-const? x))))
(additions (get-sub-structures
#’(lambda (x) (rec-bv-addition? x))))
(negations (get-sub-structures
#’(lambda (x) (rec-bv-negation? x))))
11! Compl does not work in Mona (early version)
complements (get-sub-structures
1 g b
#’(lambda (x) (rec-bv-negation? x))))
(complement-fnames
(loop for i from 1 to (length complements) collect
(CLOS::string-append ” Compl_”
(princ-to-string i))))
(complement-alist
(if *allow-complement*
nil
(pairlis complements complement-fnames)))

(filter-lengths
(remove-duplicates
(append var-len
(mapcar #’(lambda (x) (bv-addition-modulo x))
additions)
(mapcar #’(lambda (x) (arith-bool-bv-length x))
negations)
(mapcar # bv-extraction-length

(get-sub-structures #’(lambda (x) (rec-bv-extraction?

x)))))))
(filter-fnames
(loop for e in filter-lengths collect
(CLOS::string-append ”Filter_"
(princ-to-string e))))
(filter-assoc (pairlis filter-lengths filter-fnames))
(addition-fnames
(loop for i from 1 to (length additions) collect
(CLOS::string-append "RES."
(princ-to-string i))))
(constant-fnames
(loop for e in constants collect
(CLOS::string-append " CONST.”
(princ-to-string (bv-const-length e))
(princ-to-string (bv-const-value €)))))
(addition-alist (pairlis additions addition-fnames))
(constant-alist (pairlis constants constant-fnames))
(replace-alist (append (mapcar #’(lambda (x)
(cons (car x)
(CLOS ::string-append
(edr x)

” inter ”

(dassoc (bv-addition-modulo (car

x)) filter-assoc)
"))
addition-alist)
(mapcar #'(lambda (x)
(cons (car x)
(CLOS ::string-append
(edr x)

” inter ”

(dassoc (bv-var-length (car x))

filter-assoc)
”)”)))
(pairlis vars var-fnames))
constant-alist
(mapcar #'(lambda (x)
(cons (car x)
(CLOS ::string-append
e
(edr x)

” inter ”

(dassoc (arith-bool-bv-length (car

x)) filter-assoc)

complement-alist)))

ii; == Create Axioms ---
(filter-axioms
(loop for e in filter-assoc collect
(let ((len (car e))
(name (cdr e)))
‘(alll "p” (and (=> (< "p” ,len)

81

(in *p” ,name))

(=> (<= len "p")
(notin "p” ,name)))))))
(constant-axioms
(loop for e in constant-alist append
(let* ((con (car e))
(len (bv-const-length con))
(val (bv-const-value con))
(bits (reverse (nat2bools val len)))
(name (cdr e)))
((alll ”p” (=> (<= ,len ”p”)
(notin ”p” ,name)))
,@(loop for i from 0 to (1- len) collect
(if (nth i bits)
‘(in ,i ,name)
‘(notin i ,name)))))))
(addition-axioms-strings
(loop for e in addition-alist collect
(let™ ((ad (car e))
i3 (modulo (cadr ad))
(args (cddr ad))
(len (length args))
(name (cdr e)))
(eval "(CLOS::string-append
"add” (princ-to-string len) " ("
,@(loop for e in args append
'(,(translate-form-to-string-with-replace e replace-alist)

;name ”)”)))))

"))
HH
(complement-axioms-strings
(loop for e in complement-alist collect
(CLOS::string-append
” Complement(
(translate-form-to-string-with-replace (car (bv-bool-args (car
e))) replace-alist)
(cdr e)
7 ™))

)
(labels ((check-via-mona (negate width trigger-on trigger-off)

;; Ouptut the created Terms
(new-mona-file)
(output-var2-and-addition-defs
var-fnames
(apply #’'max

(cons 0

(mapear #’(lambda (x)
(length (bv-addition-args x)))
additions)))
width)
(output-main-implication
(append (mapcar #’(lambda (x) (translate-form-to-string-
with-replace x replace-alist))
(append filter-axioms
constant-axioms))

addition-axioms-strings

complement-axioms-strings ;!;

)
(translate-form-to-string-with-replace term1 replace-alist)
(translate-form-to-string-with-replace term2 replace-alist)
(append constant-fnames

addition-fnames

filter-fnames

complement-fnames ;!;

negate)
(ifuncall trigger-on)
(call-mona-program)
(ifuncall trigger-off)
(secan-mona-output)))
i1 -- THE ONLY ONE CALL TO MONA --
(check-via-mona nil width trigger-mona-on trigger-mona-off))))))

(defun translate-form-to-string-with-replace (form alist)
et ((make-bracket-string (op list
fl ke-b ki ing 1i
(eval "(CLOS::string-append
>
,@(loop for e in (butlast list) collect
(CLOS::string-append
(translate-form-to-string-with-replace e alist)
> op ? 7)
,(translate-form-to-string-with-replace (car (last list)) alist)
”)")))
(make-intermediate-string (op argl arg?2)
(CLOS ::string-append
(translate-form-to-string-with-replace argl alist)
50 op ?
(translate-form-to-string-with-replace arg?2 alist)
»)7))
(make-quantified-string (quan var body)
(CLOS ::string-append
»(»
quan
» o»

var

(translate-form-to-string-with-replace body alist)

”)")))

APPENDIX C. SOURCE CODES

(cond
((assoc form alist :TEST #’equal)
(edr (assoc form alist :TEST #’equal)))
((stringp form) form)
((integerp form) (princ-to-string form))
((consp form)
(case (car form)
(<=> (make-bracket-string ” <=>" (cdr form)))
(= (make-bracket-string ”=" (cdr form)))
(and (make-bracket-string ”&” (cdr form)))
(or (make-bracket-string ”—" (cdr form)))
(<= (make-bracket-string ”<=" (cdr form)))
(=> (make-bracket-string "=>" (cdr form)))
(< (make-bracket-string " <” (edr form)))
(> (make-bracket-string ”>" (cdr form)))
(not (CLOS::string-append
(translate-form-to-string-with-replace (cadr form) alist)
(in (make-intermediate-string ”in”
(caddr form)))
(notin (make-intermediate-string "notin” (princ-to-string (cadr form))
(caddr form)))
(all0 (make-quantified-string "all0” (cadr form) (caddr form)))
(alll (make-quantified-string "all1” (cadr form) (caddr form)))
(all2 (make-quantified-string "all2” (cadr form) (caddr form)))
(exist0 (make-quantified-string "exist0” (cadr form) (caddr form)))
(exist1 (make-quantified-string "exist1” (cadr form) (caddr form)))
(exist2 (make-quantified-string "exist2” (cadr form) (caddr form)))
(union (make-bracket-string "union” (cdr form)))
(inter (make-bracket-string "inter” (cdr form)))
(compl (CLOS::string-append
»(compl ”
(translate-form-to-string-with-replace (cadr form) alist)
S

(+ (translate-offset-to-string-with-replace (cadr form) (caddr form)

(princ-to-string (cadr form))

alist))
(- (translate-offset-to-string-with-replace (cadr form) (- 0 (caddr
form)) alist))
(bv-compose (translate-composition-to-string-with-replace form alist))
(bv-extract (translate-extraction-to-string-with-replace form alist))
i -- boolean --
(bv-and (translate-form-to-string-with-replace
*(inter ,@(bv-bool-args form)) alist))
(bv-or (translate-form-to-string-with-replace
*(union ,@(bv-bool-args form)) alist))
(bv-not (translate-form-to-string-with-replace
*(inter (compl ,@(bv-bool-args form))
,(CLOS::string-append
" Filter.”
(princ-to-string (arith-bool-bv-length form))))
alist))

(t (error-misc “translate-form-to-string-with-replace” »
caught.”)))))))

form “not

(defun translate-composition-to-string-with-replace (emp alist)
(let* ((args (reverse (bv-composition-content emp)))
(offset 0)
(offsets (loop for e in args collect
(let ((old offset))
(incf offset (arith-bool-bv-length e))
old))))
(translate-form-to-string-with-replace
*(union ,@(loop for e in (pairlis args offsets) collect
'(+ ,(translate-form-to-string-with-replace (car e) alist)
J(edr))))
alist)))

(defun translate-offset-to-string-with-replace (term offset alist)
(let ((str (translate-form-to-string-with-replace term alist)))

(cond
((= offset 0)

str)

(< offset 0)

(CLOS::string-append ”(” str ” - * (princ-to-string (- 0 offset)))”))
(t

(CLOS::string-append ”(” str » + ” (princ-to-string offset) ”)”)))))

(defun translate-extraction-to-string-with-replace (extr alist)
(let ((len (bv-extraction-length extr))
(bv (bv-extraction-bv extr))
(off (bv-extraction-right extr)))
(translate-form-to-string-with-replace
‘(inter (- ,bv ,off)
,(CLOS::string-append "Filter.” (princ-to-string len)))
alist)))

s o o o o o ok ok ok ok ok ok ok

AUXillary Functions
s o o o o o o o ok ok ok ok ok

(defun create-filter-names (n)
(loop for i from 1 to n collect
(CLOS ::string-append "Filter”
(princ-to-string i))))

(defun dassoc (a alist)
(cdr (assoc a alist :TEST ’equal)))

82

(defun rewrite-boolean-logic-AON (term)
i1 Replace boolean operations: XOR
;i By AND OR NOT
(cond
((rec-bv-var? term)
term)
((rec-bv-const? term)
term)
((rec-bv-extraction? term)
(make-bv-extraction
(rewrite-boolean-logic-AON (bv-extraction-bv term))
(bv-extraction-left term)
(bv-extraction-right term)))
((rec-bv-composition? term)
(make-bv-composition-from-list
(mapcar #’rewrite-boolean-logic-AON
(bv-composition-content term))))
((rec-bv-addition? term)
(make-bv-addition-from-list
(bv-addition-modulo term)
(mapcar #’rewrite-boolean-logic-AON
(bv-addition-args term))))
((rec-bv-bool? term)
(case (bv-recognizer term)
(bv-and term)
(bv-or term)
(bv-not term)
(bv-xor (let ((x (rewrite-boolean-logic-AON
(car (bv-bool-args term))))
(v (rewrite-boolean-logic-AON
(cadr (bv-bool-args term)))))
(make-bv-or (make-bv-and (make-bv-not x) y)
(make-bv-and x (make-bv-not y)))))
(t (error-misc "rewrite-boolean-logic-AON [bool]” term "not caught.”))))
(t (error-misc "rewrite-boolean-logic-AON” term "not caught.”))))

L sk K K K K K R R R ok ok ok ok sksk sk sk ok K K K

File Handling
S

(defun new-mona-file ()
(with-open-file (stream *mona-input-file*
:direction :output
if-exists :supersede
:if-does-not-exist :create)
(format stream "## Check Fixed Sized Bit Vector Equations via Mona
1.17%”)
(format stream ”## part of Diploma Thesis~%”)
(format stream ”## M. Oliver Moeller 1997~ %”)
(format stream ”linear;”%”)

(defun output-var2-and-addition-defs (names add-upto width)
(with-open-file (stream *mona-input-file*
:direction :output
“does-not-exist :error
:if-exists :append)
(loop for n in names do
(format stream ”var2
(if (> add-upto 1)
(progn
(with-open-file (include *full-adder-file*
:direction :input
\if-does-not-exist :error)
(loop for i from 1 to (file-length include) do
(princ (read-char include) stream)))
(create-addition-predicates add-upto stream)))
(unless *allow-complement*

“a;"%” n))

(format stream ”~%pred Complement(var2 X,Y) = alll p : (p < ~d) =>
((p in X) <=> (p notin Y));" %~ %" width))))
(defun output-main-implication (axiom-stringlist strl str2 existential-

quantified negate)
(with-open-file (stream *mona-input-file*
:direction :output
tif-does-not-exist :error
lif-exists :append)
(flet ((conjunction-output-if (list)
(if (null list)
(format stream ” true)
(progn
(format stream ” (”)
(loop for a in (butlast list) do
(format stream ”“a & ~% ” a))
(format stream ”~a)" (car (last list)))))))
(format stream ”~%g## Check the following ~a Implication:~%a(”
(if negate ”(negated)” "”)
(if (consp existential-quantified)
(eval
’(CLOS::string-append
J(if negate ” (7 (")
Mex2 ™
,@(loop for e in (butlast existential-quantified) append
(e 7))
J(car (last existential-quantified))
EHE

(conjunction-output-if axiom-stringlist)

APPENDIX C. SOURCE CODES

(format stream » & % ("a™% = “a)))i"%” strl str2)))) C.2 Fixed SOlver

(defun call-mona-program () i;; Diploma Thesi
(shell ii; "Solving Bit-Vector Equations

(CLOS::string-append iii - A Decision Procedure for Hardware Verifikation”

mona-call-exe 355
» » ;33 M. Oliver M”oller

-c -u HEH
mona-input-file 111 University of Ulm
59> » i1; Faculty for Computer Science (Informatik)
*mona-output-file® ;i3 AT Department (Abteilung fuer kuenstliche Intelligenz)
”1> ;33 Supervising Professor: F. von Henke
*mona-output-file® H
) P HIS SOLVER FOR BITVECTOR-THEORY
(defun scan-mona-output () i - WITH +fixed size
(let ((res ‘error)) i - +fixed extraction
(flet ((testfor (string) i - +composition
(shell (CLOS::string-append i - +boolean operations
Yegrep ” i - +artithmetic [via OBDDs]
» % string "' ” 5

mona-output-file » > » i - Oliver M”oller (moeller@ki.informatik.uni-ulm.de)
mona-result-file)) H - -

(with-open-file (stream *mona-result-file* 3 - File: bvec_fixed._solver
:direction :input ;i - Purpose: Provides canonizer fixed-sigma

- and solver fixed-bv-solve

lif-does-not-exist :error) i)
(if (> (file-length stream) i; - Requires: bvec_structure.cl
0) P - bvec_bdd-solve.cl

t Q- bvec.arith.cl
nil)))) 5 o- bvec.slicing.cl

(con i
((testfor "Formula is valid”) i - USAGE:
(setf res 'tautology)) i; - Load and compile the required files in the listed order;
((testfor "Counter-example”) i; - Call (fixed-bv-solve (BV-EQUATL <terml1> <term2>))
(setf res ’counterexample)) i - [for term structure refer to bvec_structure.cl]

((testfor "Formula is unsatisfiable”) ;i - The function returns list, that contains

(setf res 'unsatisfiable))) ;i - (a) the symbol "TRUE if the equation is a tautology
res))) ;i - (b) the symbol 'FALSE if the equation is unsatisfiable
ii - (c) else, a number of lists
ok ke H (BV-EQUAL <original variable> <bv-term>)

Creating Formulae i
;s NOTE:
The term notation is NOT identic with the one in the
(defun create-addition-predicates (n stream) ;7 Diploma Thesis!
i; from binary to n-ary terms ;; Due to an (obsolete) design decision, the least significant
(flet ((add-pred (i) ;; bit is at the rightmost position and concatenations are the

(let ((vars (loop for j from 1 to i collect i; other way round as a consequence;
(CLOS::string-append ”S” ;ioeg. (x{4} o y{4}) " (1,0) = y{4} = (1,0)
(princ-to-string j))))) i

(eval i; Allegro Common Lisp Version
'(CLOS::string-append ;i BEGUN: 1/9/1998

»pred add” ,(princ-to-string i) ”(var2 ” i

,@(loop for e in vars append I o o ol o ol i o ol S i N e ol ol o ol o o o e

(e ")) i + General Settings

"Result) = ~% ex2 Z: add” e e o o

J(princ-to-string (1- i))

» (in-package user)

,@(loop for e in (butlast vars) append

e) 15 observing
"7Z) & % add2(Z,”

J(car (last vars)) (defconstant *obs-fs* nil)

" Result) "% %")))))
(loop for i from 3 to n do (dgfmacro obs-fs (arg)
(format stream (add-pred i))))) (if *obs-fs* arg))

e e e e e e e e e e e e (defvar *heuristic-node-prior* 0)
(defvar *heuristic-node-post* 0)

ii; * BExamples *
L R

ii; ** Loading **
(defun ex-1 () j;; TAUTOLOGY

(solve-via-mona (defun 11 () (load ”/home/hiwi/moeller/da/lisp/bvec_fixed_solver.cl”))

*(bv-equal
(bv-addition 4 (defun 11 ()
(bv-compose (load ” /home/hiwi/moeller/da/lisp/bvec_structure.cl”)
(bv-extract (bv-var x 4) (tupcons 2 0)) (load ” /home/hiwi/moeller/da/lisp/bvec_bdd_solve.cl”)
(bv-const 0 1)) (load ” /home/hiwi/moeller/da/lisp/bvec-arith.cl”)
(bv-const 1 4) (load ” /home/hiwi/moeller/da/lisp/bvec-slicing.cl”)
(bv-const 0 4) (load ” /home/hiwi/moeller/da/lisp/bvec-fixed_solver.cl”)
(bv-const 0 4)))
(bv-compose (bv-extract (bv-var x 4) (tupcons 2 0))
(bv-const 1 1))))) (defun cc ()
(compile-file ” /home/hiwi/moeller/da/lisp/bvec_structure.cl”)
(defun ex-2 () ;;; UNSATISFIABLE (compile-file ” /home/hiwi/moeller/da/lisp/bvec-bdd_solve.cl”)

(compile-file ” /home/hiwi/moeller/da/lisp/bvec_arith.cl”)
(compile-file ” /home/hiwi/moeller/da/lisp/bvec-slicing.cl”)
(compile-file ” /home/hiwi/moeller/da/lisp/bvec_fixed_solver.cl”)

(solve-via-mona
*(bv-equal
(bv-compose (bv-var x 5) (bv-const 1 1))
(bv-compose (bv-const 0 1) (bv-var x 5))))) i-
(load ” /home/hiwi/moeller/da/lisp/bvec_structure.fasl”)
(defun ex-3 () ;;; COUNTEREXAMPLE (load » /home/hiwi/moeller/da/lisp/bvec-bdd-solve.fasl”)
(solve-via-mona (load ” /home/hiwi/moeller/da/lisp/bvec_arith.fasl”)
*(bv-equal (load ” /home/hiwi/moeller/da/lisp/bvecslicing.fasl”)
(bv-addition 3 (bv-var x 3) (bv-var y 3)) (load ” /home/hiwi/moeller/da/lisp/bvec_fixed_solver.fasl”))
(bv-const 3 3))))

THE CANONIZER

APPENDIX C. SOURCE CODES

defun fixed-sigma (bv
g
i; (ifassert (is-fixed-bv? bv))
(fixed-beta (fixed-alpha bv)))

(defun fixed-alpha (bv)
(cond
((or (rec-bv-var? bv)
(rec-bv-const? bv))
bv)
((rec-bv-composition? bv)
(make-bv-composition
(fixed-alpha (bv-decompose-left bv))
(fixed-alpha (bv-decompose-right bv))))
((rec-bv-extraction? bv)
(fixed-alpha-extraction bv))
((rec-bv-bool-apply? bv)
(fixed-gamma bv))
((node-p bv)
(lift-bdd-if bv))
((rec-bv-addition? bv)
(fixed-delta bv))
(t (error-misc "fixed-alpha” bv "not caught.”))))

(defun fixed-alpha-extraction (bv)
(let* ((arg (fixed-alpha (bv-extraction-bv bv)))
(left (bv-extraction-left bv))
(right (bv-extraction-right bv))
(len (bv-length arg))
(times (14 (- left right))))
(cond
((eq len times) arg)
((rec-bv-extraction? arg)
(fixed-alpha-extraction
(make-bv-extraction
(bv-extraction-bv arg)
(+ left (bv-extraction-right arg))
(4 right (bv-extraction-right arg)))))
((rec-bv-composition? arg)
(let* ((bv-left (bv-decompose-left arg))
(bv-right (bv-decompose-right arg))
(Ir (bv-length bv-right)))
(cond
((< left Ir)
(fixed-alpha-extraction
(make-bv-extraction bv-right left right)))
((>= right Ir)
(fixed-alpha (make-bv-extraction bv-left (- left Ir) (- right Ir))))
(t (make-bv-composition
(fixed-alpha-extraction
(make-bv-extraction bv-left (- left Ir) 0))
(fixed-alpha-extraction
(make-bv-extraction bv-right (- Ir 1) right)))))))
((rec-bv-const? arg)
(extract-bv-const (bv-const-value arg) left right))
((rec-bv-var? arg) (make-bv-extraction arg left right))
((rec-bv-bool-apply? arg)
(fixed-gamma. (make-bv-bool-apply (car arg)

(mapcar #’(lambda (x) (fixed-alpha

(make-bv-extraction x left right)))

(edr arg)))))

((node-p arg)
(fixed-bdd-extraction arg left right))
ji--1-- the

(t (error-misc "fixed-alpha-extraction” bv “not caught.”)))))

(defun fixed-bdd-extraction (arg left right)
;s Extract in all nodes...
(let ((content (fixed-alpha
(make-bv-extraction (node-variable arg) left right)))
(n (14 (- left right)))
(then (node-then arg))
(else (node-else arg)))
(if (leaf-node? arg)
(cond
((true-node? arg) (make-true-node n))
((false-node? arg) (make-false-node n))
(t (error-misc "fixed-bdd-extraction” arg "illegal leaf node.”)))
(make-unique-node
:VARIABLE content
ELSE (fixed-bdd-extraction else left right)
\THEN (fixed-bdd-extraction then left right)))))

(defun fixed-beta (bv)
(if (rec-bv-composition? bv)
(let* ((list (bv-composition-content bv))

(actual (car list))

(next (cadr list))

(rest (eddr list))

(res nil))

(flet ((matches ()
(or (and (rec-bv-const? actual)
(rec-bv-const? next))
(and (rec-bv-extraction? actual)
(rec-bv-extraction? next)
(equal (bv-extraction-bv actual)
(bv-extraction-bv next))

(= (14 (bv-extraction-left next))

84

(bv-extraction-right actual)))
(and (node-p actual)
(node-p next)
(nodes-match? actual next))))
(melt ()
(setf
actual (cond
((rec-bv-const? actual)
(append-bv-const actual next))
((rec-bv-extraction? actual)
(fixed-alpha (make-bv-extraction
(bv-extraction-bv actual)
(bv-extraction-left actual)
(bv-extraction-right next))))
((node-p actual)
(attach-nodes actual next))
(t (error "[local]lmelt” actual "not caught.”)))
next (car rest)
rest (cdr rest))))
(loop while next do
(loop while (and next (matches)) do (melt))
(push actual res)
(setf actual next
next (car rest)
rest (edr rest)))
(if actual (push actual res))
(make-bv-composition-from-list (reverse res))))
bv))

(defun fixed-gamma (bv)
;s Turns boolan expressions into BDDs
(cond
((node-p bv) bv)
((rec-bv-bool-apply? bv)
(let* ((op (car bv))
(args (mapecar #’(lambda (x)
(fixed-alpha
(flatten-bv-constants x)))
(edr bv)))
(slicing (overlay-vector-list
(mapcar #’bv-term-to-slicing args)))
(arg-lists (ziplis (mapcar #’(lambda (x)
(mapcar #lift-to-bdd
(slice-bv-term x slicing)))
args))))

;i(prine (format nil ”ARGS : Ta"%ARG-LISTS:"a"%” args arg-lists))
(make-bv-composition-from-list
(mapecar #’'(lambda (x) (lift-bdd-if
(bdd-apply-n op x (bv-length (car x)))))
arg-lists))

(t (error-misc "fixed-gamma” bv “not caught.”))))

(defun fixed-delta (bv)
\; canonize an bv-addition (1)
(let* ((len (bv-addition-modulo bv))
(args (bv-addition-args bv))
(nargs (length args)))
(case nargs
(0 (make-bv-const 0 len))
(1 (fixed-alpha (car args)))
(2 (let ((slicing (make-fullslice len)))
(init-leaf-nodes 1)
(make-bv-composition-from-list
(riple-carry-add (pairlis
(mapcar #'lift-to-bdd (slice-bv-term (first args)
slicing))
(mapear #'lift-to-bdd (slice-bv-term (second args)
slicing)))
false-node))))
(t (fixed-delta
(make-bv-addition-from-list
len
(cons (fixed-delta
(make-bv-addition len (car args) (cadr args)))
(cddr args))))))))

i & &&&QE&EE & Q& EQ & & & & & & & & & &&&&E& & & & & & &&&E&
HH THE SOLVER
i & &&EQE&E & Q& &EQ & & & & & & & & & &&&&E& & & & & & && &

(defun fixed-bv-solve (eq &key (stream nil)
(heuristic-level 0)
(call-after-canon nil))
i35 Heuristics:
: No melting of BDDs in advance of solving
Melting on connect= ONE node matches (factor oo)
Melting on connect= factor 4
Melting on connect= factor 2.5
Melting on connect= factor 2
i Melting on connect= factor 2.4
(ifassert (is-fixed-arith-bv-equation? eq))
(ifassert (eq (bv-length (second eq)) (bv-length (third eq))))
(setf *heuristic-node-prior* 0
*heuristic-node-post™ 0)
(let ((term1 (flatten-bv-constants (fixed-sigma (second eq))))
(term2 (flatten-bv-constants (fixed-sigma (third eq)))))
(ifassert (eq (bv-length term1) (bv-length term2)))
(ifuncall call-after-canon)
(obs-fs (princ (format nil "Term1: “a~%” term1) stream))
(obs-fs (princ (format nil " Term2: “a~%” term?2) stream))

APPENDIX C. SOURCE CODES

(fail-closure :SET nil)

(if (equalp term1 term2)
(TRUE)
(let* (
(dummy (obs-fs (princ (format nil ” #H#EHHEHHH AR
Starting Csolve ###########AA##HR ") stream)))
(heuristically-combined nil)
(not-trivially-true nil)
(slice (overlay-vector-list
(list (bv-term-to-slicing term1)
(bv-term-to-slicing term2))))
(eqs (remove-duplicates
(pairlis
(slice-bv-term term1 slice)
(slice-bv-term term?2 slice))
:TEST #’same-pair?))
(bool-egs (if (= 1 (logand 1 heuristic-level))
(remove-if-not #’(lambda (x) (or (node-p (car x))
(node-p (cdr x))))
cas)))

(eqs (if (= 1 (logand 1 heuristic-level))
(remove-if #’(lambda (x) (or (node-p (car x))
(node-p (edr x))))

eqs)
eqs)) i; non-bool-eqs
(vars (remove-duplicates
(append (loop for vs in (mapecar #’car eqs) append
(all-vars-in-bv-term vs))
(loop for vs in (mapcar #’cdr eqs) append
(all-vars-in-bv-term vs))
(loop for vs in (mapcar #’car bool-eqs) append
(all-vars-in-bv-term vs))
(loop for vs in (mapcar #’cdr bool-eqs) append
(all-vars-in-bv-term vs)))
:TEST #’equal))
(nvars (length vars))
(blocks (make-array (length vars) :initial-element nil))
(slices (loop for v in vars collect
(make-nullslice (bv-var-length v))))
(changes t)
(final nil))
(declare (ignore dummy))
(labels ((fresh-var-call (var)
(neonc vars (list var))
(ncone slices (list (make-nullslice (bv-var-length var)))))
(var-pos (var) (position var vars :TEST #’equal))
(var-slice (var)

(obs-fs (princ (format nil "-- (var-slice ~a) --> ” var) stream))
(let ((res
(cond

((rec-bv-var? var) (nth (var-pos var) slices))
((rec-bv-const? var)
(make-nullslice (bv-const-length var)))
((rec-bv-extraction? var)
(extract-slice (nth (var-pos (bv-extraction-bv var)) slices)
(bv-extraction-left var)
(bv-extraction-right var)))
((and (node-p var)
(leaf-node? var))
(make-nullslice (bv-length var)))
((node-p var)
(overlay-vector-list
(mapcar #’var-slice (vars-of-node var))))
(t (error-misc " (local) var-slice” var "not caught.”)))))
(obs-fs (princ (format nil ”~a~%" res) stream))
res))
(entry-slice-var (extr)
(obs-fs (princ (format nil "-- (entry-slice-var
"77) stream))
(cond
((rec-bv-const? extr))
((rec-bv-var? extr))
((node-p extr)
(mapcar #’entry-slice-var (all-bdd-nodes extr)))
((rec-bv-extraction? extr)
(let ((var (bv-extraction-bv extr))
(left (bv-extraction-left extr)))
i only there is the new cut:
(setf (aref (var-slice var) left) t)))
(t (error-mise ”[local]lentry-slice-var” extr "not caught.”))))
i1:(has-failed? () (not possibly-solvable))
i53(fail () (setf possibly-solvable nil))

“a) --> “a~%" extr

(obs-fs (princ (format nil ”Original Vars: “a~%" vars) stream))
loop for extr in (append (all-recognized-in-arith-bool-bv-term term1
#'(lambda (x) (rec-bv-extraction? x)))
(all-recognized-in-arith-bool-bv-term term2
#'(lambda (x) (rec-bv-extraction? x)))) do
(entry-slice-var extr))
(loop for e in eqs do
(obs-fs (princ (format nil "csolve[~a = ~a] %" (car e) (cdr e))
stream))
(loop for b in (fixed-csolve (car e) (cdr e)
:FRESH-VAR-CALL #'fresh-var-call
{FAIL #'fail-closure) do
(obs-fs (princ (format nil ” => “a = ~a~%” (car b) (cdr b))
stream))
(setf not-trivially-true t)
(push (cdr b)
(aref blocks (var-pos (car b)))))

85

(if (has-failed?) (return)))
(setf heuristically-combined (heuristically-combine bool-eqs
:STREAM stream
:HEURISTIC-LEVEL heuristic-level))
(if (some #’false-node? heuristically-combined)
(fail-closure)
(loop for e in (heuristically-combine bool-eqs
'STREAM stream
{HEURISTIC-LEVEL heuristic-level)
do
(obs-fs (princ (format nil "csolve["a = TRUE] %" e) stream))
(loop for b in (fixed-csolve-bdd e
.FRESH-VAR-CALL #’fresh-var-call
FATL # 'fail-closure) do
(obs-fs (princ (format nil ” => ~a = “a"%” (car b) (cdr b))
stream))
(setf not-trivially-true t)
(push (cdr b)
(aref blocks (var-pos (car b)))))
(if (has-failed?) (return))))
(obs-fs (princ (format nil ”Vars
stream))

“a~%Slices : "a™%” vars slices)

(if (has-failed?) (return-from fixed-bv-solve ’(FALSE)))
(unless not-trivially-true (return-from fixed-bv-solve '(TRUE)))

»

(obs-fs (princ (format nil "##A## LSS LSS LSS LRSS Starting
Coarsest Slicing ###A# A LSS LSS LAAL %) stream))
(loop while changes do
(setf changes nil)
(loop for i from 0 to (1- nvars) do
(let* ((sl (nth i slices))
(sl-old (copy-slicing sl)))
(loop for term in (aref blocks i) do
(let ((slice-list (mapecar #’var-slice
(reverse (bv-flat-term-content term)))))
(or-of-slices! sl slice-list)
(and-of-slices! sl-old slice-list)))
(unless (equalp sl sl-old)
(setf
changes t
(aref blocks i)
(mapecar #’(lambda (x)
(make-bv-composition-from-list
(slice-bv-term x sl :ENTRY-SLICE-VAR

#'entry-slice-var)))
(aref blocks i)))))))

(obs-fs (princ (format nil "#### AR AR S AARASAAS Starting
Propagation ######AFALEASAREALAAH %) stream))
(obs-fs (princ (format nil "Vars : ~a~%Slices : ~a~%Blocks :
vars slices blocks) stream))
(setf final
(mapcar #fixed-beta
(process-fixed-propagation
(loop for i from 0 to (1- nvars) collect
(let ((j 0)
(columns (make-list (length (slicing-to-chop-list (nth i
slices))) :initial-element nil)))
(loop for line in (aref blocks i) do
(setf j 0)
(loop for term in (bv-flat-term-content line) do
(pushnew term (nth j columns)
'TEST #’equalp)
(inef §)))
columns))
FATL #fail-closure
{HAS-FAILED? # has-failed?
STREAM stream)))

~a~%”

(obs-fs (loop for i from 0 to (1- nvars) do
(princ (format nil "“a = ~a"%” (nth i vars) (nth i final))

stream)))

(if (has-failed?)
(FALSE)
(loop for i from 0 to (1- nvars) collect
(make-bv-equation
(nth i vars)
(nth i final))))
M)

S

i1 Failing Closure

B S

(defun fail-closure (&key (set t) (quest nil))
(defvar *internal-fail-var*)

(cond

(quest *internal-fail-var*)

(t (setf *internal-fail-var* set))))

(defun has-failed? ()
(fail-closure :QUEST t))

APPENDIX C. SOURCE CODES

(defun pair-starts-with-17 (x)
(eq (car x) 1))

(defun fixed-csolve (t1 t2 &key (fresh-var-call nil)
(fail #’'break))

Chunk-Solve

where t1 and t2 are flat terms
when creating fresh variables, fresh-var-call is called with
the fresh var as an argument
(cond

((equal t1 t2) nil)

((and (rec-bv-const? t1)

(rec-bv-const? t2))
(ifuncall fail) nil)
((or (node-p t1)
(node-p t2))
(fixed-csolve-bdd (bdd-apply-n 'BV-EQUIV
*(,(lift-to-bdd 1) ,(lift-to-bdd t2))
(bv-length t1))
.FRESH-VAR-CALL fresh-var-call
‘FATL fail))
((rec-bv-const? 1)
(list (cons (fixed-bv-content £2)
(pad-fixed-bv-if t1 t2 :FRESH-VAR-CALL fresh-var-call))))

((rec-bv-const? £2)

(list (cons (fixed-bv-content t1)

(pad-fixed-bv-if t2 t1 :FRESH-VAR-CALL fresh-var-call))))

Two non-constants!

((and (rec-bv-var-or-var-extract? 1)
(rec-bv-var-or-var-extract? t2))
(fixed-csolve-var-var t1 t2 :FRESH-VAR-CALL fresh-var-call))

(t (error-misc ”fixed-csolve” (list t1 t2) "not caught.”))))

(defun fixed-csolve-var-var (t1 t2 &key (fresh-var-call nil))
(let ((v1 (fixed-bv-content t1))
(v2 (fixed-bv-content t2)))
(if (equal v1 v2)
i1; csolve-same-var [extraction, neccessarily]
(let* ((len (bv-var-length v1))
(11 (bv-extraction-left t1))
(r1 (bv-extraction-right t1))
(12 (bv-extraction-left £2))
(r2 (bv-extraction-right t2))
(hl (max 11 12))
(11 (min 11 12))
(hr (max rl r2))
(Ir (min r1 r2)))
(if (< 11 hr)
(let ((common (make-fresh-bv-var (14 (- hl hr))
.FRESH-VAR-CALL fresh-var-call)))
(list
(cons
v1 (make-bv-composition-from-list
(list (make-fresh-bv-var (- len hl 1)
.FRESH-VAR-CALL fresh-var-call)
common
(make-fresh-bv-var (- hr 11 1)
.FRESH-VAR-CALL fresh-var-call)
common
(make-fresh-bv-var Ir
.FRESH-VAR-CALL fresh-var-call))))))
(let* ((delta (- hr Ir))
(overlap (14 (- 11 hr)))
(gamma (+ overlap delta delta))
(k-times (DIV gamma delta))
(lambda (MOD gamma delta))
(freshl (make-fresh-bv-var lambda
:FRESH-VAR-CALL fresh-var-call))
(fresh2 (make-fresh-bv-var (- delta lambda)
:FRESH-VAR-CALL fresh-var-call)))
(list
(cons v1
(fixed-alpha
(pad-fixed-bv-if
(make-bv-composition-from-list
(cons freshl (loop for i from 1 to k-times append
(list fresh2 fresh1))))
(make-bv-extraction v1 hl Ir)
.FRESH-VAR-CALL fresh-var-call)))))))

i -- different vars --
(let ((fresh (make-fresh-bv-var (bv-length t1) :FRESH-VAR-CALL
fresh-var-call)))
(list
(cons v1 (pad-fixed-bv-if fresh t1 :FRESH-VAR-CALL fresh-var-call))
cons v2 (pad-fixed-bv-if fresh t2 :FRESH-VAR-CALL fresh-var-
call)))))))

(defun fixed-csolve-bdd (node &key (fresh-var-call nil)
(fail nil))
(let* ((len (bv-length node)))
(init-leaf-nodes len)
(loop for res in (bdd-solve node
.FRESH-VAR-CALL fresh-var-call

86

{FATL fail) collect
(cons
(fixed-bv-content (car res))
(pad-fixed-bv-if (cdr res) (car res) :FRESH-VAR-CALL fresh-var-
call)))))

(defun heuristically-combine (bool-eq-list &key (stream nil)
(heuristic-level 1))
i;; Heuristic-Level: 1 -> weakly connected
i 3 -> only strongly connected
i 5 -> only heavy connected
(setf *heuristic-node-prior* (length bool-eq-list))
(unless (null bool-eq-list)
(let ((phi (loop for b in bool-eq-list collect
(let ((node (bdd-apply-n 'BV-EQUIV
'(,(lift-to-bdd (car b))
,(lift-to-bdd (cdr b)))
(bv-length (car b)))))
(cons node (all-bdd-nodes node)))))
(actual nil)
(res nil)
(changes nil))
(flet ((connected? (a b)
(case heuristic-level
(1 (not (null (intersection (edr a) (edr b) :TEST #’equal))))
(3 (<= (+ (length (edr a)) (length (cdr b)))
(* 4 (length (intersection (cdr a) (cdr b) :TEST #’equal)))))
(5 (<= (+ (length (cdr a)) (length (cdr b)))
(* 2.5 (length (intersection (cdr a) (edr b) :TEST
#’equal)))))

(7 (= (+ (length (cdr a)) (length (cdr b)))
(* 2 (length (intersection (cdr a) (cdr b) :TEST #’equal)))))
(9 (<= (+ (length (cdr a)) (length (cdr b)))
(* 2.4 (length (intersection (edr a) (edr b) :TEST
#’equal))))) ;; Testbed
(t (error-misc "heuristically combine” (list heuristic-level)
»unknown heuristic”)))))
(loop while phi do
(setf actual (car phi)
phi (cdr phi)
changes t)
(loop while changes do
(setf changes nil)
(loop for new in phi do
(if (connected? actual new)
(let ((new-node (bdd-apply-n 'BV-AND ’(,(car actual)
(car new)) (bv-length (car actual)))))
(setf changes t
actual (cons new-node (all-bdd-nodes new-node))
phi (delete new phi :TEST #’equalp))
(return)))))
(push (car actual) res))
(obs-fs (princ (format nil ”Heuristically combine resulted in -d
Nodes:"%"a~%"” (length res) res) stream))
(setf *heuristic-node-post* (length res))

res))))

(defun process-fixed-propagation (llist &key (fail #’break)
(has-failed? #’break)
(stream nil))
:; Propagate equality within a list of lists of equivalence classes
.; [each list representing one original variable]
;; builds assoc-list representing the union-find-structure
;i Returns a list of _terms_
(let* ((alist nil)
(all-contents (loop for e in llist append
(apply #’append e)))
(flats (remove-if #’is-bv-const?
(loop for cont in all-contents
append
(if (node-p cont)
(all-bdd-nodes cont)
'(,eont)))))
(flat-times (mapcar #’(lambda (x) (count x flats :TEST #’equal))
flats))
(flat-zip (pairlis flat-times flats))
(one-timers
(mapear #’cdr
(remove-if-not #’pair-starts-with-1? flat-zip)))
(bdds (remove-if-not #’node-p
(remove-duplicates all-contents :TEST #’equal)))
(n-bdds (length bdds))
(num-to-bdd (pairlis (count-up n-bdds) bdds))
(rep-llist (loop for var in llist collect
(loop for column in var collect
(loop for entry in column collect
(if (node-p entry)
(find-via-rassoc entry num-to-bdd :TEST

entry)))))

(chunks (remove-duplicates flats :TEST #’equal))
(chunk-to-indices

(loop for c in chunks collect

(cons ¢
(loop for b in bdds append
(if (member ¢ (all-bdd-nodes b) :TEST #'equal)
(list (car (rassoc b num-to-bdd))))))))

#’'eq)

APPENDIX C. SOURCE CODES

(classes
(loop for varcl in rep-llist append
(loop for cl in varel collect
(set-difference cl one-timers :TEST #’equal)))))
(labels ((replace-in-indices (chunk bdd)
(if bdds
(loop for i in (cdr (assoc chunk chunk-to-indices :TEST
#’equal)) do
(let* ((old-bdd (cdr (assoc i num-to-bdd)))
(old-chks (all-bdd-nodes old-bdd)
(new-bdd (bdd-compose old-bdd (lift-to-bdd bdd)
chunk))
(new-chks (all-bdd-nodes new-bdd))
(obsolete (set-difference old-chks new-chks
{TEST #’equal))
(newcomers (set-difference new-chks old-chks)))
(obs-fs (princ (format nil "Replacing [~d] “a~%via ~a
<- “a"%by “a"%” i old-bdd chunk bdd new-bdd) stream))
(setf num-to-bdd
(cons (cons i new-bdd)
(delete i num-to-bdd :TEST #’(lambda (x y) (eq
x (car ¥))))))
; The following, strangely, does not work
W (setf (edr (assoc i num-to-bdd)) new-bdd)
(loop for ¢ in obsolete do
(let ((find (assoc ¢ chunk-to-indices :TEST #’equal)))
(if find
(setf (nth (position find chunk-to-indices :TEST

#’equal)
chunk-to-indices)
(delete i find)))))
(obs-fs (princ (format nil "chunk-to-indices after
deleting:"% a"~%" chunk-to-indices) stream))
(loop for ¢ in newcomers do
(insert-index ¢ 1))))))

nsert-index (c ind)
(let ((find (assoc ¢ chunk-to-indices :TEST #’equal)))
(if find
(setf (nth (position ¢ chunk-to-indices
\TEST #’(lambda (x y) (equal x (car y))))
chunk-to-indices)
(nconc find ’(,ind)))
(push (list ¢ ind) chunk-to-indices))
(obs-fs (princ (format nil "New index for “a:
indices: "a"%” c ind chunk-to-indices) stream))))

“a~%Chunk-to-

(fs-merge (a b)
(let ((af (find-via-assoc a alist))
(bf (find-via-assoc b alist)))
(obs-fs (princ (format nil ”-- merging: “a~% “a”%” af
bf) stream))
(cond
((equal af bf))
((and (rec-bv-const? af)
(rec-bv-const? bf))
(ifuncall fail)
(return-from process-fixed-propagation nil))
ii; --- here check for booleans:
((or (numberp af)
(numberp bf))
(let* ((bddl (lift-to-bdd (find-via-assoc af num-to-bdd)))
(bdd2 (lift-to-bdd (find-via-assoc bf num-to-bdd)))
(n (bv-length bdd1))
(node (bdd-apply-n 'BV-EQUIV ’(,bddl ,bdd2) n)))
(loop for eq in (bdd-solve node :FAIL fail) do
(obs-fs (princ (format nil ”..merge “a => ~a~%” (car
eq) (cdr eq)) stream))
(if (ifuncall has-failed?)
(return-from process-fixed-propagation nil))
(if (node-p (cdr eq))
(progn
(loop for ¢ in (all-bdd-nodes (cdr eq)) do
(insert-index ¢ n-bdds))
(replace-in-indices (car eq) (cdr eq))
(push (cons n-bdds (cdr eq)) num-to-bdd)
(push (cons (car eq) n-bdds) alist)
(incf n-bdds))
(progn
(replace-in-indices (car eq) (cdr eq))
(push eq alist))))))
((rec-bv-const? af)
(setf alist (acons bf af alist))
(replace-in-indices bf af))
(t (setf alist (acons af bf alist))
(replace-in-indices af bf))))))
(obs-fs (progn
(princ (format nil "BDD-Embeddings:~%~a~%” num-to-bdd)
stream)
(princ (format nil ” Chunks-to-Indices:"%~a~%” chunk-to-indices)
stream)
(princ (format nil »Equivalence Classes:~%”) stream)
(loop for cl in classes do
(princ (format nil "~a,” %" cl) stream))))
(loop for ¢ in classes do
;; sometimes better: other order!
(unless (null c)
(let ((a (find-via-assoc (car c) alist)))
(loop for b in (cdr ¢) do
(fs-merge a b)))))
(obs-fs (princ (format nil "BDD-Embedding:" % a~%Alist: ~a~%->

87

Combining result”%” num-to-bdd alist) stream))
(let ((i -1))
(loop for orige in rep-llist collect
(progn
(obs-fs (princ (format nil »Column-list: ~a~%” orige) stream))
(make-bv-composition-from-list
(loop for column in orige collect
(progn
(incf i)
(lift-bdd-if
(or (find-via-assoc (car (nth i classes)) (append alist
num-to-bdd))
(make-fresh-bv-var (bv-length (car column))))))))))))))

(defun find-via-assoc (el alist &key (test #’equal))
(let ((res (assoc el alist :TEST test)))
(if (null res)
el
(find-via-assoc (cdr res) alist))))

(defun find-via-rassoc (el alist &key (test #’equal))
(let ((res (rassoc el alist :TEST test)))
(if (null res)
el
(find-via-rassoc (car res) alist))))

(defun fixed-bv-content (term)
(cond
((rec-bv-var? term) term)
((rec-bv-extraction? term) (bv-extraction-bv term))
(t (error-misc ”fixed-bv-content” term ”not caught.”))))

(defun pad-fixed-bv-if (term pattern &key (fresh-var-call nil))
i1; returns a eventually padded bv-term with >term< in the middle
111 according to pattern (possibly an extraction)
(cond
i no padding
((rec-bv-var? pattern)
term)
((rec-bv-extraction? pattern)
(let ((len (bv-length (bv-extraction-bv pattern)))
(left (bv-extraction-left pattern))
(right (bv-extraction-right pattern)))
(make-bv-composition-from-list
(list (make-fresh-bv-var (- len left 1) :FRESH-VAR-CALL fresh-var-call)
term
(make-fresh-bv-var right :FRESH-VAR-CALL fresh-var-call)))))
(t (error-misc ”pad-fixed-bv-if” pattern ”"not caught”))))

(defun same-pair? (x y)
(or (equalp x y)
(and (equalp (car x) (cdr y))
(equalp (car y) (cdr x)))))

[
i1 Examples
T R RR R
(defun ex-1 () ;;; TAUTOLOGY
(fixed-bv-solve
(BV-EQUAL
(bv-addition 4 (bv-var x 4) (bv-var y 4))
(bv-addition 4 (bv-var y 4) (bv-var x 4)))))

(defun ex-2 () ;;; UNSATISFTIABLE
(fixed-bv-solve
(BV-EQUAL (bv-compose (bv-var
(tupcons 11 0)))
(bv-compose (bv-var y 4) (bv-const 0 12) (bv-const 0 12)))))

x 16) (bv-extract (bv-var x 16)

(defun ex-3 () ;; Satisfiable but not valid
(fixed-bv-solve
*(bv-equal
(bv-and (bv-var x 3)
(bv-var y 3))
(bv-var x 3))))

Bibliography

[Bar93]

[BBCH]

[BGGOT]

[BK95]

[BLW95]

[BPYS]

[Bry86]

[Bry91]

[Bry92]

[Biic62]

[BWO6]

[CLS96]

Jon Barwise, editor. Handbook of mathematical logic, volume 90 of Studies in logic and the foun-
dations of mathematics. North-Holland, Amsterdam, reprint edition, 1993.

N. S. Bjgrner, A. Browne, E.C. Chang, M. Col’on, A. Kapur, Z. Manna, Sipma. H.B., and T.E.
Uribe. Step: Deductive-algorithmic verification of reactive and real-time systems. In Computer
Aided Verification; 8th International Conference, CAV 96, New Brunswick, NJ, USA. July 31 -
August 3, 1996; Proceedings.

Egon Borger, Erich Griadel, and Yuri Gurevich. The Classical Decision Problem. Springer,
Berlin;Heidelberg;New York, 1997.

David A. Basin and Nils Klarlund. Hardware verification using monadic second-order logic.
In Pierre Wolper, editor, Computer Aided Verification; 7th International Conference, CAV ’95,
Li’ege, Belgium, July 3-5, 1995; Proceedings, volume 939 of Lecture Notes in Computer Science,
pages 31-41, Berlin;Heidelberg;New York, January 1995. Springer.

Beate Bollig, Martin L&bbing, and Ingo Wegener. Variable orderings for ob-
dds, simulated annealing, and the hidden weighted bit function. Technical re-
port, University of Dortmund, FB Informatik, LS II, 1995. tr-528, to obtain at
http://www.informatik.uni-dortmund.de/papers/tr-528.ps.gz.

Nikolaj S. Bjgrner and Mark Pichora. Deciding fixed and non-fixed size bit-vectors. To appear
in the TACAS workshop, April; obtained at http://theory.stanford.edu/people/nikolaj/,
1998.

Randal E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE Transactions
on Computers, C-35(8):677-691, August 1986.

R.E. Bryant. Vlsi complexity: On the complexity of vlsi implementations and graph represen-
tations of boolean functions with application to integer multiplication. IEEE Transactions on
Computers, 40(02):205, 1991.

R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. In Com-
puting Surveys, volume 24(3), pages 293-318, September 1992.

J.R. Biichi. On a decision method in restricted second order arithmetic. In Proceedings of the
1960 Congress, Logic, Methodology and Philosophy of Science, pages 1-11. Stanford University
Press, Stanford CA, 1962.

B. Bollig and I. Wegener. Improving the variable ordering of obdds is np-complete. IEEE Trans-
actions on Computers, 45(09):993-1002, 1996.

David Cyrluk, Patrick Lincoln, and Natarajan Shankar. On shostak’s decision procedure for
combinations of theories. In McRobbie and Slaney [MS96], pages 463—477.

88

BIBLIOGRAPHY 89

[CMR96]

[CMRO7]

[Com93]

[Gal87]

[GHRO3]

[Hak85]
[HIJ*96]

[JAC90]
[Tafo0]

[Mak92]
[MS95]

[MS96]

[ND8S]

[ORS92]

[Pap94]

[Pre29]

David Cyrluk, Oliver Moller, and Harald RueB. An efficient decision procedure for a theory of
fix-sized bitvectors with composition and extraction. Ulmer Informatik-Berichte 96-08, Fakultit
flir Informatik, Universitdt Ulm, 1996.

David Cyrluk, Oliver Méller, and Harald Ruef. An efficient decision procedure for the theory of
fixed-sized bit-vectors. In Orna Grumberg, editor, Computer Aided Verification. 9th International
Conference (CAV97). Haifa, Israel, June 22-25, 1997: Proceedings, volume 1254 of Lecture Notes
in Computer Science LNCS, pages 60-71, Berlin - Heidelberg - New York, 1997. Springer.

Computer Science Laboratory, SRI International, Menlo Park, CA. User Guide for the EHDM
Specification Language and Verification System, Version 6.1, February 1993. Three volumes.

J.H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving. J. Wiley
& Sons, 1987.

Cov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Artificial
Intelligence and Logic Programming Vol.1: Logical Foundations. Handbooks of Logic in Computer
Science and Artificial Intelligence and Logic Programming. Oxford University Press, Oxford, 1993.

Armin Haken. The intractability of resolution. In TCS-39-1 [TCS84], pages 297-308. Journal.

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In Tools and Algorithms for the Construction and
Analysis of Systems, First International Workshop, TACAS °95, LNCS 1019, 1996. Also available
through http://www.brics.dk/ klarlund/Mona/main.html.

Journal of the acm, January 1990. Journal.

Joxan Jaffar. Minimal and complete word unification. In JACM-37-01 [JAC90], pages 47-85.
Journal.

G. S. Makanin. Investigations on equations in a free group. In Schulz [Sch92b], pages 1-11.

Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5 microprocessor: A case
study in the industrial use of formal methods. In WIFT °95: Workshop on Industrial-Strength
Formal Specification Techniques, pages 2-16, Boca Raton, FL, 1995. ieeecs.

M. A. McRobbie and J. K. Slaney, editors. Automated Deduction - CADE-13; 13th International
Conference on Automated Deduction, New Brunswick, NJ, USA, July 30 - August 8, 1996; Pro-
ceedings, volume 1104 of Lecture Notes in Computer Science;1.2.3, F.4.1-2, Berlin;Heidelberg;New
York, 1996. Springer.

G. Sivakumar N. Dershowitz, M. Odaka. Confluence of conditional rewrite systems. In Stephane
Kaplan and Jean-Pierre Jouannaud, editors, Conditional Term Rewriting Systems. 1st Interna-
tional Workshop Orsay, France, July 8-10, 1987, volume 308 of Lecture Notes in Computer Science,
pages 31 — 44, Berlin;Heidelberg;New York, 1988. Springer.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur,
editor, 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748-752, Saratoga, NY, 1992. Springer-Verlag,.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Massachusetts
- Menlo Park, California - New York, 1994.

M. Presburger. Uber die vollstindigkeit eines gewissen systems der arithmetik ganzer zahlen, in
welcher die addition als einzige operation hervortritt. In Comptes Rendus du I Congrés des
Mathématiciens des Pays Slaves, pages 92-101, 1929.

BIBLIOGRAPHY 90

[Sch86]

[Sch92a]

[Sch92b]

[Sho78]

[Sho84]
[TCS84]
[TH]

[vL90a]

[vL9Ob]

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester;New
York;Brisbane, 1986.

Uwe Schoning. Theoretische Informatik kurz gefafit. BI Wissenschaftsverlag, Mannheim - Leipzig
- Wien - Ziirich, 1992.

Klaus Ulrich Schulz, editor. Word Equations and Related Topics. 1st International Workshop
IWWERT ’90, Tibingen, Germany, October 1-3, 1990, volume 572 of Lecture Notes in Computer
Science, Berlin;Heidelberg;New York, 1992. Springer.

R.E. Shostak. An Algorithm for Reasoning about Equality. Communications of the ACM,
21(7):583-585, July 1978.

R.E. Shostak. Deciding Combinations of Theories. Journal of the ACM, 31(1):1-12, January 1984.
Theoretical computer science, July 1984. Journal.

J-L. Lassez T. Huynh, C. Lassez. Fourier algorithm revisited. In Algebraic and Logic Programming,
pages 117-131. Springer.

Jan van Leeuwen, editor. Handbook of Theoretical Computer Science. Vol. A: Algorithms and
Complezity. Elsevier, Amsterdam - New York - Oxford, 1990.

Jan van Leeuwen. Handbook of Theoretical Computer Science. Vol. B: Formal Methods and Se-
mantics. Elsevier, Amsterdam - New York - Oxford, 1990.

