
BRICS Qualifying Exam

Automation for Formal Verification:

Exploiting Structure

M. Oliver Möller

Supervision: Michael I. Schwartzbach / Kim Guldstrand Larsen

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 1

Roadmap

Part I Automation in theorem proving: congruence closure

? congruence closure framework

? bit-vector theories

? computational complexity of solving

Part II Automation in model checking: hierarchical decomposition

Part III Automation in concurrency: identifying togetherness

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 2

Roadmap

Part I Automation in theorem proving: congruence closure

? congruence closure framework

? bit-vector theories

? computational complexity of solving

Part II Automation in model checking: hierarchical decomposition

Part III Automation in concurrency: identifying togetherness

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 3

Automated Theorem Proving

Γ ` ϕ

Γ : assumptions

ϕ : conclusion

Inference system Theorem prover

sequent calculus PVS

We want reasonable tool support:

• high-level strategies (like induct & simplify)

X

• heuristics to search for proofs

X

• full automation in simple cases

congruence closure

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 4

Automated Theorem Proving

Γ ` ϕ

Γ : assumptions

ϕ : conclusion

Inference system Theorem prover

sequent calculus PVS

We want reasonable tool support:

• high-level strategies (like induct & simplify) X
• heuristics to search for proofs X
• full automation in simple cases congruence closure

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 5

Encoding Equations in a DAG

Given: fff x = f x, x = y

Conclude: fffff y = f x

as a
graph f

x y

f

f

=⇒
f

x y

f

f

[y]

[fff x]

cut
out
redundant
parts

fffff y = fffff x

fffff x = fff x

fff x = f x

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 6

Encoding Equations in a DAG

Given: fff x = f x, x = y

Conclude: fffff y = f x

as a
graph f

x y

f

f

=⇒
f

x y

f

f

[y]

[fff x]

cut
out
redundant
parts

fffff y = fffff x

fffff x = fff x

fff x = f x

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 7

Shostak Style Framework

Theorem

T ` a = b iff node(a) R̂T node(b)

Shostak ’84: It is possible to combine several theories in this frame-
work, if they are algebraically solvable.
For every theory we have

canonizer: term t −→ σ(t)
unique representation: |= t = u ⇔ σ(t) .=σ(u)

solver: equation t = u −→ ∧
i

xi = si

explicit description of all solutions

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 8

Bit-Vector Theories

Core

• x[n] : bvecn

number of bits n a constant

• Constants c[n], c ∈ IN

• Concatenation:

⊗ →
x[3] y[3] x[3]⊗y[3]

• Extraction:
0 1 2

[0 : 1] → 0 1

x[3] x[3][0 : 1]

Extensions

• Boolean operations
x[3] ∧ y[3]

• Arithmetic (modulo 2n)
x[3] +[3] y[3]

• Variable length

x[n] : bvecn

n : IN

• Variable Extraction
x[3][i:j] : bvecj−i+1

i, j : IN

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 9

Bit-Vector Theories

Core

• x[n] : bvecn

number of bits n a constant

• Constants c[n], c ∈ IN

• Concatenation:

⊗ →
x[3] y[3] x[3]⊗y[3]

• Extraction:
0 1 2

[0 : 1] → 0 1

x[3] x[3][0 : 1]

Extensions

• Boolean operations
x[3] ∧ y[3]

• Arithmetic (modulo 2n)
x[3] +[3] y[3]

• Variable length

x[n] : bvecn

n : IN

• Variable Extraction
x[3][i:j] : bvecj−i+1

i, j : IN

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 10

Canonizing Bit-Vector Terms

Phase α: flatten extractions
0 1 2 0 1 2(
x[3] ⊗ y[3]

)
[0 : 3]

0 1 2 0

x[3] ⊗ y[3][0 : 0]

Phase β: glue together
0 1 2

x[3][0 : 1] ⊗ x[3][2 : 2]

0 1 2

x[3]

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 11

Bit-Vector Solver: Chop

(1) p[n]⊗t = q[n]⊗u �

 p[n] = q[n]

t = u

(1′) p[n]⊗t = q[m]⊗u, n < m �

p[n] = σ(q[m][0 : n− 1])

σ(q[m][n : m− 1])⊗u = t

q[m] = σ(q[m][0 : n− 1])⊗σ(q[m][n : m− 1])

(1′′) p[n]⊗t = q[m] �

p[n] = σ(q[m][0 : n− 1])

σ(q[m][n : m− 1]) = t

q[m] = σ(q[m][0 : n− 1])⊗σ(q[m][n : m− 1])

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 12

Bit-Vector Solver: Propagate

(2) c = d , c 6 .= d � FAIL

(3) t = t � {}

(4)

 p = t

q = u

 , q � t �

 p = t[q/u]

q = u

(5)

 p = q

q = r

 �

 p = r

q = r

(6)

 p = q

q = p

 � { p = q }

(7)

 p = t

p = u

 �

 p = t

u = t

(8) c = t, t /∈ C � { t = c }
(9) p = q⊗t, p 6 .= σ(q⊗t) � { q⊗t = p }

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 13

Complexity of the Satisfiability Problem

[in P]

Core Theory

[in P]

Core Theory

[in P]

Core Theory

[in P]

Core Theory

[in P]

Core Theory

[in P]

Core Theory

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 14

Complexity of the Satisfiability Problem

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

+ Arithmetic

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

+ Arithmetic

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

+ Arithmetic

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

+ Arithmetic

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

+ Arithmetic

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

+ Arithmetic

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 15

Complexity of the Satisfiability Problem

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[?]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[?]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[?]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[?]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[?]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[?]

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 16

Complexity of the Satisfiability Problem

[NP-hard]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound

[NP-complete]

variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[in PSPACE]

only composition

[in P]

[?]

[NP-hard]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound

[NP-complete]

variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[in PSPACE]

only composition

[in P]

[?]

[NP-hard]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound

[NP-complete]

variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[in PSPACE]

only composition

[in P]

[?]

[NP-hard]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound

[NP-complete]

variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[in PSPACE]

only composition

[in P]

[?]

[NP-hard]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound

[NP-complete]

variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[in PSPACE]

only composition

[in P]

[?]

[NP-hard]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

[NP-complete] [NP-complete] [NP-complete]

[NP-complete][NP-complete][NP-complete]

[NP-complete]

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound

[NP-complete]

variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

[in PSPACE]

only composition

[in P]

[?]

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 17

Expressiveness of Solving

∀x.∃y.∃z.(x ∨ y) ↔ ¬z

solve
(
(x ∨ y) ↔ ¬z

)
=

x = a

y = b

z = ¬a ∧ ¬b

∀x.∀y.∀z.(x ∨ y) ↔ ¬z : false ∃x.∀y.∀z.(x ∨ y) ↔ ¬z : false

∀x.∀y.∃z.(x ∨ y) ↔ ¬z : true ∃x.∀y.∃z.(x ∨ y) ↔ ¬z : true

∀x.∃y.∀z.(x ∨ y) ↔ ¬z : false ∃x.∃y.∀z.(x ∨ y) ↔ ¬z : false

∀x.∃y.∃z.(x ∨ y) ↔ ¬z : true

∃x.∃y.∃z.(x ∨ y) ↔ ¬z : true

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 18

Expressiveness of Solving

∀x.∃y.∃z.(x ∨ y) ↔ ¬z

solve
(
(x ∨ y) ↔ ¬z

)
=

x = a

y = b

z = ¬a ∧ ¬b

∀x.∀y.∀z.(x ∨ y) ↔ ¬z : false ∃x.∀y.∀z.(x ∨ y) ↔ ¬z : false

∀x.∀y.∃z.(x ∨ y) ↔ ¬z : true ∃x.∀y.∃z.(x ∨ y) ↔ ¬z : true

∀x.∃y.∀z.(x ∨ y) ↔ ¬z : false ∃x.∃y.∀z.(x ∨ y) ↔ ¬z : false

∀x.∃y.∃z.(x ∨ y) ↔ ¬z : true ∃x.∃y.∃z.(x ∨ y) ↔ ¬z : true

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 19

Quantification Lemma

General Method

• start with a quantified equation
Q1x1...Qnxn. t = u

• let S = solve(t = u);
derive

∧
i

xi = si where

– all xi appear in the right order

– terms si do not refer to xj with j > i

• check for ∀-quantified xi, whether si is un-
restricted

small overhead
in the size of
the solution(
O(|S| · log |S|)

)

⇒ Solving essentially decides all quantified versions

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 20

Complexity Revisited

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound
variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

only composition

[in P]

PSPACE-hard

[no complete solver exits]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound
variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

only composition

[in P]

PSPACE-hard

[no complete solver exits]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound
variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

only composition

[in P]

PSPACE-hard

[no complete solver exits]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound
variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

only composition

[in P]

PSPACE-hard

[no complete solver exits]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound
variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

only composition

[in P]

PSPACE-hard

[no complete solver exits]

Theory
Extended Counting

[undecidable]

[in P]

+ variable Extraction + Arithmetic + Boolean Operations

+ variable Extraction
+ Boolean Operations + Boolean Operations

+ Arithmetic+ variable Extraction

+ variable Extraction
+ Arithmetic
+ Boolean Operations

Core Theory

Core Theory

Core Theory

Core TheoryCore TheoryCore Theory

Core Theory

Core Theory

only composition

but with upper bound
variable Width

variable Width
only composition

variable Width

+ variable Extraction

+ Boolean Operations

Core Theory

[+ Arithmetic]

+ Arithmetic

only composition

[in P]

PSPACE-hard

[no complete solver exits]

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 21

Summary on Part I

We established

• canonizer and solver for the core theory

• two extensions:
boolean operations (canonizer + solver)
variable width (solver)

• quantification lemma

Further development?

• high computational complexity

• interesting fragments?
⇒ algebraically solvability a serious restriction

• extension of the framework?
⇒ seems to boil down to a case-split

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 22

Roadmap

Part I Automation in theorem proving: congruence closure

? congruence closure framework

? bit-vector theories

? computational complexity of solving

Part II Automation in model checking: hierarchical decomposition

? model checking and temporal logic

? a technique for temporal scaling

? hierarchical structuring

Part III Automation in concurrency: identifying sequential parts

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 23

Model Checking

M |= ϕ

M : description of the system

ϕ : desired property

• easier than proving a general theorem

• completely automatic (’yes’ or counterexample)

• efficient algorithms tailored for classes of problems

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 24

Temporal Logics

ν

TCTL

L

HM safety properties

CTL

ATL interaction with environment

- calculusµ bisimulation

lifeness properties

νL
PSPACE

co
m

pu
ta

tio
na

l c
om

pl
ex

ity

TCTL
EXPTIME

safety properties

CTL lifeness properties

HM

ATL interaction with environment

µ bisimulation- calculus

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 25

Temporal Logics

ν

TCTL

L

HM safety properties

CTL

ATL interaction with environment

- calculusµ bisimulation

lifeness propertiesνL
PSPACE

co
m

pu
ta

tio
na

l c
om

pl
ex

ity

TCTL
EXPTIME

safety properties

CTL lifeness properties

HM

ATL interaction with environment

µ bisimulation- calculus

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 26

Problems with Model Checking

• exponential growth of the state space
⇒ state explosion problem

• restricted expressiveness of the model
⇒ experience required to make apt abstractions

• restricted expressiveness of the logics
⇒ properties often have to be encoded

• excessive time/space consumption
⇒ heuristics to make state space exploration more efficient

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 27

Temporal Scaling

idle idle idle

busy
P1 P2

P3 P4 P5

⇒
P2

P3 P4

P1+2

P5

P1

Instead of: Use:

P1 ||P2 ||P3 ||P4 ||P5

hide busy in P1 ||P2 ||
P3 ||P4 ||P5

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 28

Temporal Scaling

idle idle idle

busy
P1 P2

P3 P4 P5

⇒
P2

P3 P4

P1+2

P5

P1

Instead of: Use:

P1 ||P2 ||P3 ||P4 ||P5 hide busy in P1 ||P2 ||
P3 ||P4 ||P5

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 29

Model Checking with Mocha

• parallel execution of components

• communication via shared variables (1 write/multi read)

• ATL model checker

• invariant check:
allows temporal scaling via “next” Θ for P

(Rajeev Alur and Bow-Yaw Wang, CONCUR’99)

• heuristic to preprocess a system for “next”

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 30

Incremental Clustering

input: hypergraph H= (C, E)

output: forest with leaves C
PriorityQueue Q

forest := { }
Forall considered candidates A ⊆ C

insert(A, Q)

While notempty(Q)

A := top(Q)

fresh node A©
forest := forest + (A© 7→ A)

redirect hyperedges: Ai ∈ A becomes A©
Forall B ∈ Q with B ∩ A 6= ∅

remove(B, Q)

Forall new candidates D containing A©
insert(D, Q)

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 31

Asynchronous Parity Computer

req
ack

req00
ack00

req01
ack01

req10
ack10

req11
ack11

req000
ack000

req001
ack001

req011
ack011 req100

ack100

req111
ack111

req110
ack110

req101
ack101

req010
ack010

req0
ack0

req1
ack1

Root

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

Clients : issue value true or false

Joins : compute xor

Root : acknowledges

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 32

Good Heuristic Function

Root

Join

Join0 C1

C00 C01

C1

Root

Join

Join0 Join1

C00 C01 C10 C11

Root

Join

Join0

Join00 Join01

C000 C001 C010 C011

C1

Root

Join

Join0 Join1

Join00 Join01

C000 C001 C010 C011

C10 C11

Root

Join

Join0 Join1

Join00 Join01 Join10

C000 C001 C010 C011 C100 C101

C11

Root

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

r+
pref (A) :=

|{e ∈ E ∣∣ e ⊆ A}|
|A|2 +

ε1

|{e ∈ E ∣∣ e ∩ A 6= ∅}| +
ε2

depth(A)

Cover-Number Size Egdes Depth

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 33

Good Heuristic Function

Root

Join

Join0 C1

C00 C01

C1

Root

Join

Join0 Join1

C00 C01 C10 C11

Root

Join

Join0

Join00 Join01

C000 C001 C010 C011

C1

Root

Join

Join0 Join1

Join00 Join01

C000 C001 C010 C011

C10 C11

Root

Join

Join0 Join1

Join00 Join01 Join10

C000 C001 C010 C011 C100 C101

C11

Root

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

r+
pref (A) :=

|{e ∈ E ∣∣ e ⊆ A}|
|A|2 +

ε1

|{e ∈ E ∣∣ e ∩ A 6= ∅}| +
ε2

depth(A)

Cover-Number Size Egdes Depth

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 34

Good Heuristic Function

Root

Join

Join0 C1

C00 C01

C1

Root

Join

Join0 Join1

C00 C01 C10 C11

Root

Join

Join0

Join00 Join01

C000 C001 C010 C011

C1

Root

Join

Join0 Join1

Join00 Join01

C000 C001 C010 C011

C10 C11

Root

Join

Join0 Join1

Join00 Join01 Join10

C000 C001 C010 C011 C100 C101

C11

Root

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

r+
pref (A) :=

|{e ∈ E ∣∣ e ⊆ A}|
|A|2 +

ε1

|{e ∈ E ∣∣ e ∩ A 6= ∅}| +
ε2

depth(A)

Cover-Number Size Egdes Depth

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 35

Summary on Part II

We established

• incremental method for hierarchical decomposition
(has direct application with temporal scaling)

• heuristic function based on 4 criteria:
Cover-Number, Size, Edges, Depth

• sample problem, where this heuristic is well-behaved

Left to do

• validate method/function with other sample topologies

• investigate applicability beyond invariant properties

• (possibly) integration in the next Mocha release

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 36

Guiding Idea

System:
parallel components

Connections:
influence behavior

Structure:
often has asymmetries

A

B

C

D

E

F

{A,B,C} belong strongly together
{D, E} are not as “together” as {E, F}

General Observation:
If we can adapt our analysis to asymmetries, it becomes either

• more expressive

or • more efficient

We aim to describe, detect and exploit “Togetherness”

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 37

Describe Togetherness

Desired Characterization:

{A, B} are together [to extend α] ⇔ ?

Likely: the links influence this

Unlikely: link information suffices

Methodologies:

• Identification by categorical models

• CCS- or CSP -like frameworks

• Properties derived from automata interaction

⇒ If goal too ambitious, restrict to special cases

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 38

Detect Togetherness

To be expected: Good characterizations are computationally expensive

⇒ identify typical patterns

If infeasible, investigate why
⇒ lower bounds / hardness results

Reasonable hope for partial solutions

• develop heuristics (guided search)

• describe special cases

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 39

Exploit Togetherness

A

B

C

D
a b c

Abstraction

A

B

C

D

c

b

a

Given System

Galois Connection

α (P)

α γ

P
(P)A

PA

γ

∀P, P A : α(P) ⊆ P A ⇔ P ⊆ γ(P A)

Property holds in abstraction =⇒ Property holds in actual system

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 40

Starting Point: Brick Sorter

? !

Verify controller, running on LEGOr RCX
• Specified as timed automaton (Uppaal)
• Proven Property: always will kick off black

Problem

model checking slow: many delay steps without real progress

Possible solutions

• temporal scaling: ≈ ’next Θ for P ’

• abbreviations: 1000 a → 512 a + 256 a + 128 a + 64 a + 32 a + 8 a

• building abstraction and prove it correct

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 41

Summary

Previous work

• Bit-Vectors: 2 canonizers, 3 solvers, 2 new
complexity results

• Model-Checking: heuristic to partition a
system hierarchically

backed with
(experimental)
implementations

Future plans

• Develop a variation of ’next’, tailored for timed automata

• Explore the phenomenon of Togetherness in concurrent sys-
tems in greater detail

QUALIFYING EXAM 24.2.2000 AUTOMATION FOR FORMAL VERIFICATION: EXPLOITING STRUCTURE 42

