BRICS Qualifying Exam

Automation for Formal Verification: Exploiting Structure

M. Oliver Möller

Supervision:

Michael I. Schwartzbach / Kim Guldstrand Larsen

Part I Automation in theorem proving: congruence closure

Part II Automation in model checking: hierarchical decomposition

Part III Automation in concurrency: identifying togetherness

Roadmap

Part I Automation in theorem proving: congruence closure

- \star congruence closure framework
- \star bit-vector theories
- \star computational complexity of solving

Part II Automation in model checking: hierarchical decomposition

Part III Automation in concurrency: identifying togetherness

Automated Theorem Proving

- Γ : assumptions
- φ : conclusion

Inference system \longrightarrow Theorem prover

We want *reasonable* tool support:

- high-level strategies (like *induct & simplify*)
- heuristics to search for proofs
- full automation in simple cases

Automated Theorem Proving

- Γ : assumptions
- φ : conclusion

Inference system \rightsquigarrow Theorem proversequent calculusPVS

We want *reasonable* tool support:

- high-level strategies (like *induct* & *simplify*) •
- heuristics to search for proofs
- full automation in simple cases

Encoding Equations in a DAG

Encoding Equations in a DAG

$$\begin{aligned} fffffy &= fffffx \\ fffffx &= fffx \\ fffx &= fx \end{aligned}$$

Shostak Style Framework

Theorem

 $T \vdash a = b$ iff $node(a) \hat{R}_T node(b)$

Shostak '84: It is possible to combine *several* theories in this framework, if they are *algebraically solvable*. For every theory we have

> **canonizer:** term $t \longrightarrow \sigma(t)$ unique representation: $\models t = u \Leftrightarrow \sigma(t) \doteq \sigma(u)$

solver: equation $t = u \longrightarrow \bigwedge_{i} x_i = s_i$ explicit description of all solutions

Bit-Vector Theories

Core

- $x_{[n]}$: $bvec_n$ number of bits n a constant
- Constants $c_{[n]}, c \in \mathbb{N}$
- Concatenation:

	\otimes		\rightarrow	
$x_{[3]}$		$y_{[3]}$		$x_{[3]} \otimes y_{[3]}$
Extrac	ction	1:		

$$\begin{array}{cccc} \overset{0}{\blacksquare} \overset{1}{\square} & [0:1] & \to & & & \\ & & \\ x_{[3]} & & & x_{[3]}[0:1] \end{array}$$

Bit-Vector Theories

Core

- $x_{[n]}$: $bvec_n$ number of bits n a constant
- Constants $c_{[n]}, c \in \mathbb{N}$
- Concatenation:

	\otimes		\rightarrow	
$x_{[3]}$		$y_{[3]}$		$x_{[3]} \otimes y_{[3]}$

- Extraction:
 - $\begin{array}{cccc} \overset{0}{\square} \overset{1}{\square} & [0:1] & \to & \overset{0}{\square} \\ x_{[3]} & & & x_{[3]}[0:1] \end{array}$

Extensions

• Boolean operations

 $x_{[3]} \wedge y_{[3]}$

- Arithmetic (modulo 2^n) $x_{[3]} +_{[3]} y_{[3]}$
- Variable length
 - $x_{[n]}$: $bvec_n$
 - n : $I\!N$
- Variable Extraction $x_{[3]}[i:j] : bvec_{j-i+1}$ i, j : IN

Canonizing Bit-Vector Terms

Bit-Vector Solver: Chop

$$\begin{array}{ll} (1) & p_{[n]} \otimes t = q_{[n]} \otimes u \\ \left\{ \begin{array}{l} p_{[n]} = q_{[n]} \\ t = u \end{array} \right\} \\ (1') & p_{[n]} \otimes t = q_{[m]} \otimes u, \quad n < m \\ \left\{ \begin{array}{l} p_{[n]} = \sigma(q_{[m]}[0:n-1]) \\ \sigma(q_{[m]}[n:m-1]) \otimes u = t \\ q_{[m]} = \sigma(q_{[m]}[0:n-1]) \\ \sigma(q_{[m]}[0:n-1]) \otimes \sigma(q_{[m]}[n:m-1]) \end{array} \right\} \\ (1'') & p_{[n]} \otimes t = q_{[m]} \\ (1'') & p_{[n]} \otimes t = q_{[m]} \end{array} \qquad \left\{ \begin{array}{l} p_{[n]} = \sigma(q_{[m]}[0:n-1]) \\ \sigma(q_{[m]}[n:m-1]) = t \\ q_{[m]} = \sigma(q_{[m]}[0:n-1]) \otimes \sigma(q_{[m]}[n:m-1]) \end{array} \right\}$$

Bit-Vector Solver: Propagate

Core Theory

[in P]

Expressiveness of Solving

$$\forall x. \exists y. \exists z. (x \lor y) \leftrightarrow \neg z$$

solve((x \lor y) \leftrightarrow \neg z) =
$$\begin{cases} x = a \\ y = b \\ z = \neg a \land \neg b \end{cases}$$

 $\forall x. \exists y. \exists z. (x \lor y) \leftrightarrow \neg z \quad : \ true$

Expressiveness of Solving

$$\forall x. \exists y. \exists z. (x \lor y) \leftrightarrow \neg z$$

solve((x \lor y) \leftrightarrow \neg z) =
$$\begin{cases} x = a \\ y = b \\ z = \neg a \land \neg b \end{cases}$$

$\forall x. \forall y. \forall z. (x \lor y) \leftrightarrow \neg z$: false	$\exists x. \forall y$
$\forall x. \forall y. \exists z. (x \lor y) \leftrightarrow \neg z$: true	$\exists x. \forall y$
$\forall x. \exists y. \forall z. (x \lor y) \leftrightarrow \neg z$: false	$\exists x. \exists y$
$\forall x. \exists y. \exists z. (x \lor y) \leftrightarrow \neg z$: true	$\exists x. \exists y$

 $\exists x. \forall y. \forall z. (x \lor y) \leftrightarrow \neg z \quad : false \\ \exists x. \forall y. \exists z. (x \lor y) \leftrightarrow \neg z \quad : true \\ \exists x. \exists y. \forall z. (x \lor y) \leftrightarrow \neg z \quad : false \\ \exists x. \exists y. \exists z. (x \lor y) \leftrightarrow \neg z \quad : true \end{cases}$

Quantification Lemma

General Method

- start with a quantified equation $Q_1 x_1 \dots Q_n x_n$. t = u
- let S = solve(t = u);derive $\bigwedge_{i} x_i = s_i$ where
 - all x_i appear in the right order
 - terms s_i do not refer to x_j with j > i
- check for \forall -quantified x_i , whether s_i is *unrestricted*

 $\begin{array}{ll} \text{small} & \text{overhead} \\ \text{in the size of} \\ \text{the solution} \\ \left(\mathcal{O}(|S| \cdot \log |S|) \right) \end{array}$

\Rightarrow

Solving essentially decides all quantified versions

Complexity Revisited

Summary on Part I

We established

- canonizer and solver for the core theory
- two extensions:

boolean operations (canonizer + solver) variable width (solver)

• quantification lemma

Further development?

- high computational complexity
- interesting fragments?
 - \Rightarrow algebraically solvability a serious restriction
- extension of the framework?
 - \Rightarrow seems to boil down to a case-split

Roadmap

Part I Automation in theorem proving: congruence closure

- \star congruence closure framework
- \star bit-vector theories
- \star computational complexity of solving

Part II Automation in model checking: hierarchical decomposition

- \star model checking and temporal logic
- \star a technique for temporal scaling
- \star hierarchical structuring

Part III Automation in concurrency: identifying sequential parts

Model Checking

$M \models \varphi$

- M : description of the system
- φ : desired property
- easier than proving a general theorem
- completely automatic ('yes' or counterexample)
- efficient algorithms tailored for classes of problems

Temporal Logics

Temporal Logics

Problems with Model Checking

- exponential growth of the state space \Rightarrow state explosion problem
- restricted expressiveness of the model
 ⇒ experience required to make apt abstractions
- restricted expressiveness of the logics
 ⇒ properties often have to be *encoded*
- excessive time/space consumption
 - \Rightarrow heuristics to make *state space exploration* more efficient

Temporal Scaling

 $P1 \,||\, P2 \,||\, P3 \,||\, P4 \,||\, P5$

Temporal Scaling

Model Checking with MOCHA

- parallel execution of components
- communication via shared variables (1 write/multi read)
- ATL model checker

• invariant check:

allows temporal scaling via "next" Θ for P(Rajeev Alur and Bow-Yaw Wang, CONCUR'99)

• heuristic to preprocess a system for "next"

Incremental Clustering

hypergraph $\mathcal{H} = (\mathcal{C}, \mathcal{E})$ input: **output:** forest with leaves C $PriorityQueue \ Q$ forest := $\{ \}$ FORALL considered candidates $\mathcal{A} \subseteq \mathcal{C}$ $insert(\mathcal{A}, Q)$ WHILE notempty(Q) $\mathcal{A} \coloneqq top(Q)$ fresh node $\langle A \rangle$ $forest := forest + (A) \mapsto A$ redirect hyperedges: $A_i \in \mathcal{A}$ becomes $\langle \mathcal{A} \rangle$ FORALL $\mathcal{B} \in Q$ with $\mathcal{B} \cap \mathcal{A} \neq \emptyset$ remove(\mathcal{B}, Q) FORALL new candidates \mathcal{D} containing $\langle \! \mathcal{A} \! \rangle$ $insert(\mathcal{D}, Q)$

Asynchronous Parity Computer

- **Clients** : issue value *true* or *false*
- **Joins** : compute *xor*
- **Root** : acknowledges

Good Heuristic Function

Good Heuristic Function

$$\mathbf{r}_{pref}^{+}(\mathcal{A}) \coloneqq \frac{|\{e \in \mathcal{E} \mid e \subseteq \mathcal{A}\}|}{|\mathcal{A}|^{2}} + \frac{\varepsilon_{1}}{|\{e \in \mathcal{E} \mid e \cap \mathcal{A} \neq \emptyset\}|} + \frac{\varepsilon_{2}}{depth(\mathcal{A})}$$
Cover-Number Size Egdes Depth

Good Heuristic Function

$$\mathbf{r}_{pref}^{+}(\mathcal{A}) \coloneqq \frac{|\{e \in \mathcal{E} \mid e \subseteq \mathcal{A}\}|}{|\mathcal{A}|^{2}} + \frac{\varepsilon_{1}}{|\{e \in \mathcal{E} \mid e \cap \mathcal{A} \neq \emptyset\}|} + \frac{\varepsilon_{2}}{depth(\mathcal{A})}$$

Cover-Number Size Egdes Depth

Summary on Part II

We established

- incremental method for hierarchical decomposition (has direct application with temporal scaling)
- heuristic function based on 4 criteria:

Cover-Number, Size, Edges, Depth

• sample problem, where this heuristic is well-behaved

Left to do

- validate method/function with other sample topologies
- investigate applicability beyond invariant properties
- (possibly) integration in the next MOCHA release

Guiding Idea

System: parallel components

Connections:

influence behavior

Structure:

often has asymmetries

{A,B,C} belong strongly together{D, E} are not as "together" as {E, F}

General Observation:

If we can adapt our analysis to asymmetries, it becomes either

• more expressive

or $\bullet\,$ more efficient

We aim to describe, detect and exploit "Togetherness"

Describe Togetherness

Desired Characterization:

 $\{A, B\}$ are together [to extend α] \Leftrightarrow ?

- **Likely:** the links influence this
- **Unlikely:** link information suffices

Methodologies:

- Identification by categorical models
- CCS- or CSP-like frameworks
- Properties derived from automata interaction

 \Rightarrow If goal too ambitious, restrict to special cases

Detect Togetherness

To be expected: Good characterizations are computationally expensive

 \Rightarrow identify typical patterns

If infeasible, investigate why

 \Rightarrow lower bounds / hardness results

Reasonable hope for *partial* solutions

- develop heuristics (guided search)
- describe special cases

Exploit Togetherness

Starting Point: Brick Sorter

Verify controller, running on LEGO® RCX
Specified as timed automaton (UPPAAL)
Proven Property: always will kick off black

Problem

model checking slow: many delay steps without real progress

Possible solutions

- temporal scaling: \approx 'next Θ for P'
- abbreviations: $1000 a \rightarrow 512 a + 256 a + 128 a + 64 a + 32 a + 8 a$
- building abstraction and prove it correct

Summary

Previous work

- Bit-Vectors: 2 canonizers, 3 solvers, 2 new complexity results
- Model-Checking: heuristic to partition a system hierarchically

backed with (experimental) implementations

Future plans

- Develop a variation of 'next', tailored for timed automata
- Explore the phenomenon of *Togetherness* in concurrent systems in greater detail