
Structure and Hierarchy in Real-Time
Systems

Modeling and Analysis

M. Oliver Möller

BRICS PhD School, ªArhus

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 1

Traditional Input/Output Programs

YES

NO

INPUT OUTPUT

YES

NO

INPUT OUTPUT
YES

NO

INPUT OUTPUTi==n

i:=i+1

b(i+1):=a(i)

a(i):=1+b(i)

a(i):=b(i)

PRINT bREAD a

Correctness := relation over Input / Output

Testing := try some typical and some borderline cases

Analysis := proof something for ALL inputs

can use assertions on sub-structures

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 2

Traditional Input/Output Programs

YES

NO

INPUT OUTPUT
YES

NO

INPUT OUTPUT

YES

NO

INPUT OUTPUTi==n

i:=i+1

b(i+1):=a(i)

a(i):=1+b(i)

a(i):=b(i)

PRINT bREAD a

Correctness := relation over Input / Output

Testing := try some typical and some borderline cases

Analysis := proof something for ALL inputs

can use assertions on sub-structures

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 3

Traditional Input/Output Programs

YES

NO

INPUT OUTPUT
YES

NO

INPUT OUTPUT
YES

NO

INPUT OUTPUTi==n

i:=i+1

b(i+1):=a(i)

a(i):=1+b(i)

a(i):=b(i)

PRINT bREAD a

Correctness := relation over Input / Output

Testing := try some typical and some borderline cases

Analysis := proof something for ALL inputs

can use assertions on sub-structures

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 4

Application: Reactive Systems (?)

Embedded:
mixture of hard- and software;
severe resource limitations;
interaction with environment

Real-Time:
Correctness not only dependent
on the logical order of events,
but also on their timing

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 5

Application: Reactive Systems (?)

Embedded:
mixture of hard- and software;
severe resource limitations;
interaction with environment

Real-Time:
Correctness not only dependent
on the logical order of events,
but also on their timing

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 6

Reactive Systems are Different

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

black cactus

structured

messy implementation different levels

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 7

Reactive Systems are Different

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

black cactus

structured

messy implementation

different levels

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 8

Reactive Systems are Different

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

black cactus structured

messy implementation

different levels

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 9

Reactive Systems are Different

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

black cactus structured

messy implementation different levels

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 10

Reactive Systems are Different

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Hardware Level

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

while t
 do if x<1
 then c(x)
 else d(c)
goto lab:

meek(s(x))
finish_foo
end

every 2 sec

whenever(foo)

print!

beep

memory

flag

MM

j
c(x)

LOOP

ping(t)

every(1)

A B

shade

Controller

Probe

Sys

Hardware Level

Controller

Probe

Sys

black cactus structured

messy implementation different levels

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 11

Composing the Embedded System Model

Controller
System

Probe

Environment
continous

Reactive
Program

discrete

sensors

actuators

Model of Environment

(user−supplied) (automatic)

Model of Program

ANALYSIS
System Model

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 12

The Big Questions

What are appropriate languages to model a reac-
tive system ?

How do we perform analysis on partially com-
pleted systems ?

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 13

Outline of the Thesis

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 14

What was Known, What is New?

H
ie

ra
rc

h
ic

al
P

ar
ti

ti
o

n
in

g

Hiearchical Timed
Automata (HTA) M

o
d

el
A

u
g

m
en

ta
ti

o
n

Dense Real-Time
Pred.-Abstraction

Hierarchies/
Statecharts

Timed Automata
Abstract

Interpretation

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 15

What was Known, What is New?
H

ie
ra

rc
h

ic
al

P
ar

ti
ti

o
n

in
g

Hiearchical Timed
Automata (HTA) M

o
d

el
A

u
g

m
en

ta
ti

o
n

Dense Real-Time
Pred.-Abstraction

Hierarchies/
Statecharts

Timed Automata
Abstract

Interpretation

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 16

Outline of the Thesis – and this Talk

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automataHierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-timePredicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 17

In the Following

Chapter 3: Hierarchical Timed Automata

1 Restricted Statecharts with Real-Time

2 A Trace-Based Semantics

3 Flattening and Correspondence

4 Case Study: Cardiac Pacemaker

Chapter 7: Predicate Abstraction for Dense Real-Time

5 Galois Connection to an Untimed Model

6 Progress Assumption by Restricting Delays

7 Successive Refinement

Summary

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 18

The Statechart Formalism

A B

exit / enter

/aa

Features

• hierarchical state machines

• parallelism (on any level)

• history

• event communication

• powerful synchronization mechanisms

• inter-level transitions

• actions that are dependent on states

• actions on entry/exit

• ...

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 19

Claim:

The statechart formalism is appropriate for
the development of reactive systems

Fact:

Basic statechart properties are undecidable
⇒ automated analysis impossible in general

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 20

Restricted Statechart Formalism

exit!

a?
a!

BA

Concentration on key features

• hierarchical state machines ✔

• parallelism (on any level) ✔

• history ✔

• no event communication

• no sync states

• no inter-level transitions

• no actions that are dependent on states

• no actions on entry/exit

instead:

• hand-shake style synchronization

• shared variables

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 21

Real-Time Extensions

Clocks

(timed) Guards

Invariants

Clock Resets

A

x ≤ 7

B

x ≤ 7

x := 0

x := 0

x ≥ 5

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 22

Hierarchical Timed Automata (HTAs)

The HTA formalizm has a formal semantics

operational style

interprets time as ”dense real-time”

trace-based

Benefits

unambiguous

mechanizable

you can proof something about it

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 23

Semantic Rules (Example)

configuration: 〈ρ, µ, ν, θ〉 with ρ : control locations

µ : valuation of integer variables

ν : valuation of clocks

θ : history

operation: .

t : l
g,s,r,u
−−−−→ l′, ρ, µ, ν a transition

g(µ, ν) JoinEnabled(ρ, µ, ν, l) Inv(ρTt , νTt) ¬EXIT(l′)
action

(ρ, µ, ν, θ)
t
−→ Tt(ρ, µ, ν, θ)

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 24

Ingredients for the Semantic Rules

JoinEnabled(ρ, µ, ν, S) := BASIC(S) ∨

∃E ∈ PreExitSets(S). ∀b ∈ Leaves(ρ, S). ∃b′ ∈ E.

b
g
−→ b′ ∧ g(µ, ν)

PreExitSets(l) :=

⋃
n1,...,nk

£
1≤i≤k

PreExitSets(ni), where

k = |˜δ(δ
−1(l))|, {n1, . . . , nk} ⊆ δ×(δ−1(l)),

∀i.EXIT(ni) ∧ ni −→ l ∈ T

{δ−1(n1), . . . , δ
−1(nk)} = ˜δ(l)

if
EXIT(l)∧

AND(δ−1(l))

⋃
m∈δ(δ−1(l))

PreExitSets(m), where m
g,r
−−→ l ∈ T

∪ {{l}}

if
EXIT(l)∧

XOR(δ−1(l))

{} if BASIC(l)

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 25

This Formalizm is

1) hierarchical

2) timed

3) decidable

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 26

Model Checking

M
?

|= ϕ

M : description of the system

ϕ : desired (correctness) property

easier than proving a general theorem

completely automatic (’yes’ or counterexample)

efficient algorithms tailored for classes of problems

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 27

Real-Time Model Checking with UPPAAL

A B

x <= 5

x := 0

x == 5
count := count +1

∣∣ ∣∣
C

D

count == 4

network of
(flat)
timed
automata

clock x; int count

Only a subset of timed computation tree logic (TCTL) supported:

E<> ϕ reachability

A[] ϕ safety (invariantly ϕ)

E[] ϕ possibly always ϕ

A<> ϕ inevitably ϕ

A[] ϕ ⇒ A<> ψ unbounded response
ϕ,ψ : propositional formula over locations and (existing) clocks

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 28

Outline of the Flattening

Basically:

one superstate I one (parallel) automaton

+ some housekeeping

Problems:

template mechanism

scope of channels

pre-compuation of all possible global joins

≈ 10·000 lines of documented Java code

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 29

Example: Flattening the Model of a Human Heart

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

I

VContraction

HEART_TIME <= 0

AContraction

HEART_TIME <= 0

After_V_Contraction

HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

After_A_Contraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped

HEART_TIME <= HEART_ALLOWED_STOP_TIME

FLATLINE

S_IDLE

enter_S_in_X_via_A?

enter_S_in_X_via_V?

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1

VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0
HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME

HEART_TIME := 0

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

H

inner superstate

S_ACTIVE_in_X

X_IDLE

X_AUX_S_VX_AUX_S_A

CONNECT_A CONNECT_V

enter_S_in_X_via_V!
enter_S_in_X_via_A!

enterTop?

HEART_TIME := 0

APace?

HEART_TIME := 0

xtSgnl_NR_5!
VPace?

HEART_TIME := 0
xtSgnl_NR_5!

outer superstate

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 30

Soundness & Correctness

Translations introduce slack. Thus

MH |= ϕ 6⇔ flatten(MH) |= flatten(ϕ)

but

MH |= ϕ ⇔ flatten(MH) |=project(M) flatten(ϕ)

timed transition system timed flatten(M) traces

↓ give rise to ↓ project to MH

timed MH traces match timed MH traces

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 31

From (timed) Statecharts to UPPAAL

Rhapsody timed Statechart −→ HTA model MH −→ TA model flatten(MH)

hierarchical model TA-close hierarchy MODEL-CHECK

informal description formal semantics formal semantics

NORMALIZATION
simplification of data
(safe) omission of C++ code

FLATTENING
auxiliary locations
auxiliary variables

Guiding Principle: Make it easy to adjust to small changes!

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 32

From (timed) Statecharts to UPPAAL

Rhapsody timed Statechart −→ HTA model MH −→ TA model flatten(MH)

hierarchical model TA-close hierarchy MODEL-CHECK

informal description formal semantics formal semantics

NORMALIZATION
simplification of data
(safe) omission of C++ code

FLATTENING
auxiliary locations
auxiliary variables

Guiding Principle: Make it easy to adjust to small changes!

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 33

Model Checking a Pacemaker

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToInhibited? ToTriggered?

TriggeredInhibited
inIdle

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

ToIdle?

Self Triggered

Idle

Self Inhibited

Off

On

Human Heart

Pacemaker
Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?
triggerVar1 := triggerVar1 + 1

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

PROGRAMMER_TIME == MODE_SWITCH_DELAY
triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1

Medic

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 34

Model-Checking the Pacemaker

DEADLOCK:
possible (if heart stops)

SAFETY:
A[] ¬heart stops

only true for ’good’ medic

LIVENESS:
A[] (Vcontract

=> A<> Acontract)

Parameters:
REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

E.g. for MODE_SWITCH_DELAY = 65, A[] ¬heart stops is violated

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 35

Model-Checking the Pacemaker

DEADLOCK:
possible (if heart stops)

SAFETY:
A[] ¬heart stops

only true for ’good’ medic

LIVENESS:
A[] (Vcontract

=> A<> Acontract)

Parameters:
REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

E.g. for MODE_SWITCH_DELAY = 65, A[] ¬heart stops is violated

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 36

Summary on Hierarchical Timed Automata

The Major Gains:

for modeler:
more flexible and compact modeling (than with flat automata)

for development process:
intermediate format for automated analysis of design models
(requires typically an abstraction step)

Future Work:

put to use in AIT-WOODDES project
RHAPSODY UML statecharts to be model-checked via UPPAAL

to be integrated in the UPPAAL tool
I UPPAAL timed automata are a special case of HTAs

I editor for XML grammar is work in progress

I model checking engine for HTAs planned

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 37

In the Following (II)

Chapter 3: Hierarchical Timed Automata

1 Restricted Statecharts with Real-Time

2 A Trace-Based Semantics

3 Flattening and Correspondence

4 Case Study: Cardiac Pacemaker

Chapter 7: Predicate Abstraction for Dense Real-Time

5 Galois Connection to an Untimed Model

6 Progress Assumption by Restricting Delays

7 Successive Refinement

Summary

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 38

Timed Systems

Timing constraints Γ, propositional Symbols A
Timed System S = 〈L,P,C,→, l0, I〉

l0
y ≤ 1

l1 l2

x := 0

x := 0 y > xy := 0

x > y

Semantics as transition system M = 〈L× VC , P, ⇒, (l0, ν0) 〉

with non-zenoness assumption:

if trace infinite, sum over all delays is ∞

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 39

Clock Regions

0 1 x

y

1

• Given: S, C, c̃

• Finite partition of the
infinite state space

• Clock region: XC ⊆ VC s.t. for all χ ∈ Constr(c) and for any
two ν, ν′ ∈ XC it is the case that ν |≈χ if and only if ν ′ |≈χ

• ν1≡S ν2

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 40

Propositional Next-Free µ-Calculus

Syntax:

ϕ := tt | p | ¬ϕ | ϕ∧ϕ | ∃ (ϕ1Uϕ2) | ∀ (ϕ1Uϕ2) | Z | µZ.ϕ

Semantics: [[ϕ]]Mϑ . . . set of states for which ϕ holds

Intuitively, an existential (strong) until formula ∃ (ϕ1Uϕ2) holds in some
states s iff ϕ1 holds on some path from s until ϕ2 holds.

[[∃ (ϕ1Uϕ2)]]
M
ϑ

def
=

{s0 ∈ S | there exists a path τ = (s0 ⇒ s1 ⇒ . . .), s.t. si ∈ [[ϕ2]]Mϑ
for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]Mϑ }

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 41

State-Based Model Checking

Semantics of formula ϕ := the set of configurations satisfying ϕ

Model checking problem: l0
?
∈ [[ϕ]]

M
→ Yes/No

Finite quotient for timed systems: region construction

Our approach: successive refinements of finite approximations

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 42

Abstract Interpretation: Galois Connections

(QA,vA)

α γ

P

(Q,v)

γ(PA)

P
A

α(P)
(QA,vA) abstract

system

(Q,v) concrete

system

α : Q → QA abstraction

γ : QA → Q concretization

α(P) vA PA ⇔ P v γ(PA)

Essence: connection of 2 lattice structures

Problems: stability and self-loops

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 43

Predicate Abstraction of Timed Systems

Abstraction Predicates

• formula over clocks in C
E.g.: x− y ≤ 3, x2 − y2 = 3.1415,

• partition the (uncountable) state space with respect to their truth value

• set of abstractions predicates Ψ = {ψ0, . . . , ψn−1}

Abstraction function

• α :

L×

VC →

L×

Bn

• α(

l,

ν)(i) :=

(l,

ψiν

)

Concretization function

• γ :

L×

Bn →

L×

℘ (VC)

• γ(

l,

b) := {ν ∈ VC |
∧n−1

i=0 ψiν ≡ b(i)

∧ I(l)

}

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 44

Predicate Abstraction of Timed Systems

Abstraction Predicates

• formula over clocks in C
E.g.: x− y ≤ 3, x2 − y2 = 3.1415,

• partition the (uncountable) state space with respect to their truth value

• set of abstractions predicates Ψ = {ψ0, . . . , ψn−1}

Abstraction function

• α : L×VC → L×Bn

• α(l,ν)(i) := (l,ψiν)

Concretization function

• γ : L×Bn → L×℘ (VC)

• γ(l,b) := {ν ∈ VC |
∧n−1

i=0 ψiν ≡ b(i)∧ I(l)}

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 45

Predicate Abstracted Semantics

[[tt]]
Mσ

Ψ

ϑ := S
A

[[p]]
Mσ

Ψ

ϑ := {(l, b) ∈ SA | p ∈ P (l)}

[[ϕ1 ∧ ϕ2]]
Mσ

Ψ

ϑ := [[ϕ1]]
Mσ

Ψ

ϑ ∩ [[ϕ2]]
Mσ

Ψ

ϑ

[[¬ϕ]]
Mσ

Ψ

ϑ := S
A \ [[ϕ]]

Mσ̄
Ψ

ϑ

[[∃ (ϕ1Uϕ2)]]
Mσ

Ψ

ϑ := {s0 ∈ S
A | there exists a path τ = (s0⇒

σs1⇒
σs1 . . .),

s.t. si ∈ [[ϕ2]]
Mσ

Ψ

ϑ for some i ≥ 0, and

for all 0 ≤ j < i, sj ∈ [[ϕ1]]
Mσ

Ψ

ϑ

[[∀ (ϕ1Uϕ2)]]
Mσ

Ψ

ϑ := {s0 ∈ S
A | for every path τ = (s0⇒

σ̄s1⇒
σ̄ . . .),

there exists i ≥ 0 s.t. si ∈ [[ϕ2]]
Mσ

Ψ

ϑ , and

for all 0 ≤ j < i, sj ∈ [[ϕ1]]
Mσ

Ψ

ϑ }

[[Z]]
Mσ

Ψ

ϑ := ϑ(Z)

[[µZ.ϕ]]
Mσ

Ψ

ϑ := ∩{S′ ∈ SA | [[ϕ]]
Mσ

Ψ

ϑ[Z:=S′] ⊆ S
′}

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 46

Example for Abstraction

l0

x ≤ 1
l1

x = 1

We want to verify: ϕ = ∀ (tt Uat l1)
Abstraction predicates: {x = 0, x < 1, x = 1}
Assume the following sequence in the concrete trace:

(l0, x = 0)
1/2
⇒ (l0, x = 1/2)

1/4
⇒ (l0, x = 3/4)

1/4
⇒ (l0, x = 1)

true

⇒ (l1, x = 1)

Abstraction yields (only a fragment is illustrated):

l0, ψ0ψ1ψ2 l0,¬ψ0ψ1¬ψ2 l0,¬ψ0¬ψ1ψ2

Problem: spurious self-loop

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 47

Modified Semantics: Restricted Delay Step

Given: S,C, c̃

A delay step (l, ν) δ
−→ (l, (ν + δ)) is a restricted delay step iff it crosses

the border of the current clock region:

∃x ∈ C. ∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + δ ≥ k)

Restricted transition relation: ⇒R ⊆ (L,VC)× (L,VC)

The second delay step in the previous trace is disallowed:

(l0, x = 0)⇒R(l0, x = 1/2) 6⇒R(l0, x = 3/4)⇒R(l0, x = 1)⇒R(l1, x = 1)

Theorem:

[[ϕ]]Mϑ = [[ϕ]]MR

ϑ

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 48

Abstraction is Sound & Complete

Given: M = 〈SC , P,⇒, sC0 〉 a transition system

Ψ a set of predicates

M+
Ψ,M

−
Ψ the over-/under-approximations

Theorem: γ([[ϕ]]M
−

Ψ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M
+
Ψ)

Theorem:

If (∀ψ ∈ Ψ. ψν1 ⇔ ψν2) ⇒ ν1≡S ν2

Then [[ϕ]]
M−

Ψ

ϑ = [[ϕ]]
M+

Ψ

ϑ

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 49

Refinement of the Abstraction

• Basis Ψ̂: the ”exact” abstract transition system can be computed
Not practicable

• Successive approximation of the abstract transition relation:

Algorithm: refine approximation

INPUT M, Ψ̂, ϕ
CHOOSE Ψ ⊆ Ψ̂

WHILE l0 6∈ [[ϕ]]
M−

Ψ /? YES ?/

∧ l0 6∈ [[¬ϕ]]
M−

Ψ /? NO ?/

CHOOSE ψ ∈ Ψ̂ \Ψ

Ψ := Ψ ∪ {ψ}

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 50

Example (Refinement)

ϕ := ¬∃ (tt Uat l2)

Ψ := {x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤ 1, y ≥ 1, x > y, x < y}

I. ψ0 ≡ x = 0

l0, ψ0

l0,¬ψ0

l1, ψ0

l1,¬ψ0

l2, ψ0

l2,¬ψ0

M+
{x=0}

?

|= ϕ NO

τ =
(
(l0, ψ0)⇒

+(l1, ψ0)⇒
+(l1,¬ψ0)⇒

+(l2,¬ψ0)
)

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 51

Example – Continuation I.

τ = ((l0, ψ0)︸ ︷︷ ︸
s0

⇒+ (l1, ψ0)︸ ︷︷ ︸
s1

⇒+ (l1,¬ψ0)︸ ︷︷ ︸
s2

⇒+ (l2,¬ψ0))︸ ︷︷ ︸
s3

Is there a corresponding counterexample on the concrete system?
∃ τ c = (y0⇒y1⇒y2⇒y3) s.t.
y0 ∈ γ(s0), y1 ∈ γ(s1), y2 ∈ γ(s2), y3 ∈ γ(s3), y0 = sc0

F:= y0 ∈ γ(s0) ∧ y1 ∈ γ(s1) ∧ y2 ∈ γ(s2) ∧ y3 ∈ γ(s3) ∧

y1⇒y2 ∧ y2⇒y3 ∧ y0 = sc0

Is F satisfiable?

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 52

Example – Continuation II.

Here F is unsatisfiable!

y0 ∈ (l0, x = y = 0) ∈ γ(s0)

⇓

y1 ∈ (l1, x = 0∧ 0 ≤ y ≤ 1) ∈ γ(s1)

⇓

y2 ∈ (l1, x > 0∧ y > x) ∈ γ(s2)

6⇓

y3 ∈ (l1, x > 0∧ y ≥ 0) = γ(s3)

Choose ψ1 ∈ Ψ s.t. ∀ y ∈ γ(sk), y′ ∈ γ(sk+1). y 6⇒y′

Here: k = 2 ψ1 ≡ x > y

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 53

Example – Continuation III.

New approximation M+
{x=0,x>y}

Satisfies formula ϕ = ¬∃ (tt Uat l2)

l0, ψ0 ∧¬ψ1

l0,¬ψ0 ∧ψ1

l1, ψ0 ∧¬ψ1

l1,¬ψ0 ∧¬ψ1

Algorithm terminates with true
(l0, x = y = 0) ∈ [[¬∃ (tt Uat l2)]]

M

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 54

Summary on Predicate Abstraction for Real-Time

What can be verified?

Safety (known before)

Liveness (!)

Observations:

• self-loops problem:
solved by restricting the delay steps in concrete system

• logic is un-timed and without next

• a weaker assumption than non-zenoness suffices
(only restrict infinite sequences of delay steps)

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 55

Summarizing...

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 56

What was Known, What was New?
H

ie
ra

rc
h

ic
al

P
ar

ti
ti

o
n

in
g

E
ve

n
t

E
n

co
d

in
g

Tr
ac

e
S

em
an

ti
cs

Hiearchical Timed
Automata (HTA)

U
P

P
A

A
L

B
en

ch
m

ar
ki

n
g

M
o

d
el

A
u

g
m

en
ta

ti
o

n

Dense Real-Time
Pred.-Abstraction

Hierarchies/
Statecharts

Timed Automata
Abstract

Interpretation

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 57

What was Known, What was New?
H

ie
ra

rc
h

ic
al

P
ar

ti
ti

o
n

in
g

E
ve

n
t

E
n

co
d

in
g

Tr
ac

e
S

em
an

ti
cs

Hiearchical Timed
Automata (HTA) U

P
P

A
A

L
B

en
ch

m
ar

ki
n

g

M
o

d
el

A
u

g
m

en
ta

ti
o

n

Dense Real-Time
Pred.-Abstraction

Hierarchies/
Statecharts

Timed Automata
Abstract

Interpretation

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 58

What is (still) to be Done

Model checking engine for HTAs

I future work of Alexandre David, Uppsala University

Exploiting HTAs via re-use

Isimilar to re-use in modecharts (Rajeev Alur et al.)

similar to CBR technique in VISUALSTATE (Gerd Behrmann et al.)

time gives rise to difficulties

Sound abstraction step from UML statecharts to the HTA formalism

I Clearly requires approximation of data and events

Implement the successive refinement idea for timed automata

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 59

Conclusion – on Real-Time Systems

Hierarchies complicate—but do not hinder—the formal analysis;
whether they also can be exploited remains to be seen

Fully automated analysis is expensive but often feasible for
reasonably sized models
(which implies that formal methods should be applied a priori)

Predominant efficiency gain is via abstractions;
Techniques that approximate timed systems can go beyond safety

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 60

Outline of the Thesis

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 61

Bibliography

[ABB+01] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre
David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, M. Oliver
Möller, Paul Pettersson, Carsten Weise, and Wang Yi. UPPAAL - Now, Next, and
Future. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, editors, Modelling and
Veri£cation of Parallel Processes, number 2067 in Lecture Notes in Computer Science
Tutorial, pages 100–125. Springer–Verlag, 2001.

[ADF+01] Tobias Amnell, Alexandre David, Elena Fersman, M. Oliver Möller, Paul Petterson, and
Wang Yi. Tools for Real-Time UML: Formal Veri£cation and Code Synthesis, June
2001. in Implementation and Validation of Object-oriented Embedded Systems
(SIVOES’2001), Budapest, Hungary.

[BDL+01a] Gerd Behrman, Alexandre David, Kim G. Larsen, M. Oliver Möller, Paul Petterson, and
Wang Yi. UPPAAL - Present and Future. In P. Pettersson and S. Yovine, editors,
Workshop on Real-Time Tools, August 2001. Proceedings appeared as technical
report 2001-014 Uppsala University, Sweden.

[BDL+01b] Gerd Behrman, Alexandre David, Kim G. Larsen, M. Oliver Möller, Paul Petterson, and
Wang Yi. UPPAAL - Present and Future. In Proc. of the 40th IEEE Conference on

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 62

Decision and Control, pages 2281–2286, Orlando, Florida, December 2001. IEEE
Service Center.

[DM01] Alexandre David and M. Oliver Möller. From HUPPAAL to UPPAAL: A Translation from
Hierarchical Timed Automata to Flat Timed Automata. Research Series RS-01-11,
BRICS, Department of Computer Science, University of Aarhus, March 2001.

[DMY01] Alexandre David, M. Oliver Möller, and Wang Yi. Formal Veri£cation of UML
Statecharts with Real-Time Extensions. In M. R. Hansen, editor, The 13th Nordic
Workshop on Programming Theory (NWPT’01), appeared as technical report of the
Technical University of Denmark, IMM-TR-2001-12, October 2001.

[DMY02] Alexandre David, M. Oliver Möller, and Wang Yi. Formal Veri£cation of UML
Statecharts with Real-Time Extensions. to appear in Fundamental Approaches to
Software Engineering (FASE’2002), 2002.

[MA00] M. Oliver Möller and Rajeev Alur. Heuristics for Hierarchical Partitioning with
Application to Model Checking. Research Series RS-00-21, BRICS, Department of
Computer Science, University of Aarhus, August 2000. 30 pp, available online at
http://www.brics.dk/RS/00/21/.

[MA01] M. Oliver Möller and Rajeev Alur. Heuristics for Hierarchical Partitioning with
Application to Model Checking. In T. Margaria and T. Melham, editors, Correct
Hardware Design and Veri£cation Methods, 11th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 2001, Livingston, Scotland, UK, volume 2144 of

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 63

http://www.brics.dk/RS/00/21/

Lecture Notes in Computer Science (LNCS), pages 71–85, New York, NY, USA,
September 2001. Springer–Verlag.

[Möl02] M. Oliver Möller. Parking Can Get You There Faster - Model Augmentation to Speed
up Real-Time Model-Checking. to appear in Theory and Practice of Timed Systems
(TPTS’2002), 2002.

[MRS01] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction for Dense
Real-Time Systems. Research Series RS-01-44, BRICS, Department of Computer
Science, University of Aarhus, November 2001.

[MRS02] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate Abstraction for Dense
Real-Time Systems. to appear in Theory and Practice of Timed Systems
(TPTS’2002), 2002.

PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 64

	Title: Structure and Hierarchy in Real-Time Systems
	Traditional Input/Output Programs
	Application: Reactive Systems (?)
	Reactive Systems are Different
	Composing the Embedded System Model
	The Big Questions
	Outline of the Thesis
	What was Known, What is New?
	Outline of the Thesis -- and this Talk
	In the Following
	The Statechart Formalism
	Claim:
	Fact:
	Restricted Statechart Formalism
	Real-Time Extensions
	Hierarchical Timed Automata (HTAs)
	Semantic Rules (Example)
	Ingredients for the Semantic Rules
	This Formalizm is
	Model Checking
	Real-Time Model Checking with Uppaal
	Outline of the Flattening
	Example: Flattening the Model of a Human Heart
	Soundness & Correctness
	From (timed) Statecharts to Uppaal
	Model Checking a Pacemaker
	Model-Checking the Pacemaker
	Summary on Hierarchical Timed Automata
	In the Following (II)
	Timed Systems
	Clock Regions
	Propositional Next-Free -Calculus
	State-Based Model Checking
	Abstract Interpretation: Galois Connections
	Predicate Abstraction of Timed Systems
	Predicate Abstracted Semantics
	Example for Abstraction
	Modified Semantics: Restricted Delay Step
	Abstraction is Sound & Complete
	Refinement of the Abstraction
	Example (Refinement)
	Example -- Continuation I.
	Example -- Continuation II.
	Example -- Continuation III.
	Summary on Predicate Abstraction for Real-Time
	Summarizing...
	What was Known, What was New?
	What is (still) to be Done
	Conclusion -- on Real-Time Systems
	Outline of the Thesis
	Bibliography
	Bibliography

