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Traditional Input/Output Programs

YES

NO

INPUT OUTPUT

YES

NO

INPUT OUTPUT
YES

NO

INPUT OUTPUTi==n

i:=i+1

b(i+1):=a(i)

a(i):=1+b(i)

a(i):=b(i)

PRINT bREAD a

Correctness := relation over Input / Output

Testing := try some typical and some borderline cases

Analysis := proof something for ALL inputs

can use assertions on sub-structures
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Application: Reactive Systems (?)

Embedded:
mixture of hard- and software;
severe resource limitations;
interaction with environment

Real-Time:
Correctness not only dependent
on the logical order of events,
but also on their timing
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Reactive Systems are Different
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Composing the Embedded System Model

Controller
System

Probe

Environment
continous

Reactive
Program

discrete

sensors

actuators

Model of Environment

(user−supplied) (automatic)

Model of Program

ANALYSIS
System Model
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The Big Questions

What are appropriate languages to model a reac-
tive system ?

How do we perform analysis on partially com-
pleted systems ?
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Outline of the Thesis

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]
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What was Known, What is New?
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Outline of the Thesis – and this Talk

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automataHierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-timePredicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]
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In the Following

Chapter 3: Hierarchical Timed Automata

1 Restricted Statecharts with Real-Time

2 A Trace-Based Semantics

3 Flattening and Correspondence

4 Case Study: Cardiac Pacemaker

Chapter 7: Predicate Abstraction for Dense Real-Time

5 Galois Connection to an Untimed Model

6 Progress Assumption by Restricting Delays

7 Successive Refinement

Summary
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The Statechart Formalism

A B

exit / enter

/aa

Features

• hierarchical state machines

• parallelism (on any level)

• history

• event communication

• powerful synchronization mechanisms

• inter-level transitions

• actions that are dependent on states

• actions on entry/exit

• ...
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Claim:

The statechart formalism is appropriate for
the development of reactive systems

Fact:

Basic statechart properties are undecidable
⇒ automated analysis impossible in general
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Restricted Statechart Formalism

exit!

a?
a!

BA

Concentration on key features

• hierarchical state machines ✔

• parallelism (on any level) ✔

• history ✔

• no event communication

• no sync states

• no inter-level transitions

• no actions that are dependent on states

• no actions on entry/exit

instead:

• hand-shake style synchronization

• shared variables
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Real-Time Extensions

Clocks

(timed) Guards

Invariants

Clock Resets

A

x ≤ 7

B

x ≤ 7

x := 0

x := 0

x ≥ 5
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Hierarchical Timed Automata (HTAs)

The HTA formalizm has a formal semantics

operational style

interprets time as ”dense real-time”

trace-based

Benefits

unambiguous

mechanizable

you can proof something about it
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Semantic Rules (Example)

configuration: 〈ρ, µ, ν, θ〉 with ρ : control locations

µ : valuation of integer variables

ν : valuation of clocks

θ : history

operation: .

t : l
g,s,r,u
−−−−→ l′, ρ, µ, ν a transition

g(µ, ν) JoinEnabled(ρ, µ, ν, l) Inv(ρTt , νTt) ¬EXIT(l′)
action

(ρ, µ, ν, θ)
t
−→ Tt(ρ, µ, ν, θ)
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Ingredients for the Semantic Rules

JoinEnabled(ρ, µ, ν, S) := BASIC(S) ∨

∃E ∈ PreExitSets(S). ∀b ∈ Leaves(ρ, S). ∃b′ ∈ E.

b
g
−→ b′ ∧ g(µ, ν)

PreExitSets(l) :=



⋃
n1,...,nk

£
1≤i≤k

PreExitSets(ni), where

k = |˜δ(δ
−1(l))|, {n1, . . . , nk} ⊆ δ×(δ−1(l)),

∀i.EXIT(ni) ∧ ni −→ l ∈ T

{δ−1(n1), . . . , δ
−1(nk)} = ˜δ(l)





if
EXIT(l)∧

AND(δ−1(l))

⋃
m∈δ(δ−1(l))

PreExitSets(m), where m
g,r
−−→ l ∈ T

∪ {{l}}





if
EXIT(l)∧

XOR(δ−1(l))

{} if BASIC(l)
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This Formalizm is

1) hierarchical

2) timed

3) decidable
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Model Checking

M
?

|= ϕ

M : description of the system

ϕ : desired (correctness) property

easier than proving a general theorem

completely automatic (’yes’ or counterexample)

efficient algorithms tailored for classes of problems
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Real-Time Model Checking with UPPAAL

A B

x <= 5

x := 0

x == 5
count := count +1

∣∣ ∣∣
C

D

count == 4

network of
(flat)
timed
automata

clock x; int count

Only a subset of timed computation tree logic (TCTL) supported:

E<> ϕ reachability

A[] ϕ safety (invariantly ϕ)

E[] ϕ possibly always ϕ

A<> ϕ inevitably ϕ

A[] ϕ ⇒ A<> ψ unbounded response
ϕ,ψ : propositional formula over locations and (existing) clocks
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Outline of the Flattening

Basically:

one superstate I one (parallel) automaton

+ some housekeeping

Problems:

template mechanism

scope of channels

pre-compuation of all possible global joins

≈ 10·000 lines of documented Java code
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Example: Flattening the Model of a Human Heart

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

I

VContraction

HEART_TIME <= 0

AContraction

HEART_TIME <= 0

After_V_Contraction

HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

After_A_Contraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped

HEART_TIME <= HEART_ALLOWED_STOP_TIME

FLATLINE

S_IDLE

enter_S_in_X_via_A?

enter_S_in_X_via_V?

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1

VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0
HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME

HEART_TIME := 0

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

xtSgnl_NR_5?

H

inner superstate

S_ACTIVE_in_X

X_IDLE

X_AUX_S_VX_AUX_S_A

CONNECT_A CONNECT_V

enter_S_in_X_via_V!
enter_S_in_X_via_A!

enterTop?

HEART_TIME := 0

APace?

HEART_TIME := 0

xtSgnl_NR_5!
VPace?

HEART_TIME := 0
xtSgnl_NR_5!

outer superstate
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Soundness & Correctness

Translations introduce slack. Thus

MH |= ϕ 6⇔ flatten(MH) |= flatten(ϕ)

but

MH |= ϕ ⇔ flatten(MH) |=project(M) flatten(ϕ)

timed transition system timed flatten(M ) traces

↓ give rise to ↓ project to MH

timed MH traces match timed MH traces
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From (timed) Statecharts to UPPAAL

Rhapsody timed Statechart −→ HTA model MH −→ TA model flatten(MH )

hierarchical model TA-close hierarchy MODEL-CHECK

informal description formal semantics formal semantics

NORMALIZATION
simplification of data
(safe) omission of C++ code

FLATTENING
auxiliary locations
auxiliary variables

Guiding Principle: Make it easy to adjust to small changes!
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PHD DEFENSE 19 APRIL 2002 OLIVER MÖLLER: STRUCTURE AND HIERARCHY IN REAL-TIME SYSTEMS 33



Model Checking a Pacemaker

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToInhibited? ToTriggered?

TriggeredInhibited
inIdle

AVI

t==Pulse_Width
VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?
x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

ToIdle?

Self Triggered

Idle

Self Inhibited

Off

On

Human Heart

Pacemaker
Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?
triggerVar1 := triggerVar1 + 1 

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 

PROGRAMMER_TIME == MODE_SWITCH_DELAY
triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1 

Medic
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Model-Checking the Pacemaker

DEADLOCK:
possible (if heart stops)

SAFETY:
A[] ¬heart stops

only true for ’good’ medic

LIVENESS:
A[] ( Vcontract

=> A<> Acontract )

Parameters:
REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

E.g. for MODE_SWITCH_DELAY = 65, A[] ¬heart stops is violated
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Summary on Hierarchical Timed Automata

The Major Gains:

for modeler:
more flexible and compact modeling (than with flat automata)

for development process:
intermediate format for automated analysis of design models
(requires typically an abstraction step)

Future Work:

put to use in AIT-WOODDES project
RHAPSODY UML statecharts to be model-checked via UPPAAL

to be integrated in the UPPAAL tool
I UPPAAL timed automata are a special case of HTAs

I editor for XML grammar is work in progress

I model checking engine for HTAs planned
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In the Following (II)

Chapter 3: Hierarchical Timed Automata

1 Restricted Statecharts with Real-Time

2 A Trace-Based Semantics

3 Flattening and Correspondence

4 Case Study: Cardiac Pacemaker

Chapter 7: Predicate Abstraction for Dense Real-Time

5 Galois Connection to an Untimed Model

6 Progress Assumption by Restricting Delays

7 Successive Refinement

Summary
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Timed Systems

Timing constraints Γ, propositional Symbols A
Timed System S = 〈L,P,C,→, l0, I〉

l0
y ≤ 1

l1 l2

x := 0

x := 0 y > xy := 0

x > y

Semantics as transition system M = 〈L× VC , P, ⇒, (l0, ν0) 〉

with non-zenoness assumption:

if trace infinite, sum over all delays is ∞
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Clock Regions

0 1 x

y

1

• Given: S, C, c̃

• Finite partition of the
infinite state space

• Clock region: XC ⊆ VC s.t. for all χ ∈ Constr(c) and for any
two ν, ν′ ∈ XC it is the case that ν |≈χ if and only if ν ′ |≈χ

• ν1≡S ν2
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Propositional Next-Free µ-Calculus

Syntax:

ϕ := tt | p | ¬ϕ | ϕ∧ϕ | ∃ (ϕ1Uϕ2) | ∀ (ϕ1Uϕ2) | Z | µZ.ϕ

Semantics: [[ϕ]]Mϑ . . . set of states for which ϕ holds

Intuitively, an existential (strong) until formula ∃ (ϕ1Uϕ2) holds in some
states s iff ϕ1 holds on some path from s until ϕ2 holds.

[[∃ (ϕ1Uϕ2)]]
M
ϑ

def
=

{s0 ∈ S | there exists a path τ = (s0 ⇒ s1 ⇒ . . .), s.t. si ∈ [[ϕ2]]Mϑ
for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]Mϑ }
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State-Based Model Checking

Semantics of formula ϕ := the set of configurations satisfying ϕ

Model checking problem: l0
?
∈ [[ϕ]]

M
→ Yes/No

Finite quotient for timed systems: region construction

Our approach: successive refinements of finite approximations
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Abstract Interpretation: Galois Connections

(QA,vA)

α γ

P

(Q,v)

γ(PA)

P
A

α(P )
(QA,vA) abstract

system

(Q,v) concrete

system

α : Q → QA abstraction

γ : QA → Q concretization

α(P ) vA PA ⇔ P v γ(PA)

Essence: connection of 2 lattice structures

Problems: stability and self-loops
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Predicate Abstraction of Timed Systems

Abstraction Predicates

• formula over clocks in C
E.g.: x− y ≤ 3, x2 − y2 = 3.1415,

• partition the (uncountable) state space with respect to their truth value

• set of abstractions predicates Ψ = {ψ0, . . . , ψn−1}

Abstraction function

• α :

L×

VC →

L×

Bn

• α(

l,

ν)(i) :=

(l,

ψiν

)

Concretization function

• γ :

L×

Bn →

L×

℘ (VC)

• γ(

l,

b) := {ν ∈ VC |
∧n−1

i=0 ψiν ≡ b(i)

∧ I(l)

}
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Predicate Abstraction of Timed Systems

Abstraction Predicates

• formula over clocks in C
E.g.: x− y ≤ 3, x2 − y2 = 3.1415,

• partition the (uncountable) state space with respect to their truth value

• set of abstractions predicates Ψ = {ψ0, . . . , ψn−1}

Abstraction function

• α : L×VC → L×Bn

• α(l,ν)(i) := (l,ψiν)

Concretization function

• γ : L×Bn → L×℘ (VC)

• γ(l,b) := {ν ∈ VC |
∧n−1

i=0 ψiν ≡ b(i)∧ I(l)}
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Predicate Abstracted Semantics

[[tt ]]
Mσ

Ψ

ϑ := S
A

[[p]]
Mσ

Ψ

ϑ := {(l, b) ∈ SA | p ∈ P (l)}

[[ϕ1 ∧ ϕ2]]
Mσ

Ψ

ϑ := [[ϕ1]]
Mσ

Ψ

ϑ ∩ [[ϕ2]]
Mσ

Ψ

ϑ

[[¬ϕ]]
Mσ

Ψ

ϑ := S
A \ [[ϕ]]

Mσ̄
Ψ

ϑ

[[∃ (ϕ1Uϕ2)]]
Mσ

Ψ

ϑ := {s0 ∈ S
A | there exists a path τ = (s0⇒

σs1⇒
σs1 . . .),

s.t. si ∈ [[ϕ2]]
Mσ

Ψ

ϑ for some i ≥ 0, and

for all 0 ≤ j < i, sj ∈ [[ϕ1]]
Mσ

Ψ

ϑ

[[∀ (ϕ1Uϕ2)]]
Mσ

Ψ

ϑ := {s0 ∈ S
A | for every path τ = (s0⇒

σ̄s1⇒
σ̄ . . .),

there exists i ≥ 0 s.t. si ∈ [[ϕ2]]
Mσ

Ψ

ϑ , and

for all 0 ≤ j < i, sj ∈ [[ϕ1]]
Mσ

Ψ

ϑ }

[[Z]]
Mσ

Ψ

ϑ := ϑ(Z)

[[µZ.ϕ]]
Mσ

Ψ

ϑ := ∩{S′ ∈ SA | [[ϕ]]
Mσ

Ψ

ϑ[Z:=S′] ⊆ S
′}
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Example for Abstraction

l0

x ≤ 1
l1

x = 1

We want to verify: ϕ = ∀ (tt Uat l1)
Abstraction predicates: {x = 0, x < 1, x = 1}
Assume the following sequence in the concrete trace:

(l0, x = 0)
1/2
⇒ (l0, x = 1/2)

1/4
⇒ (l0, x = 3/4)

1/4
⇒ (l0, x = 1)

true

⇒ (l1, x = 1)

Abstraction yields (only a fragment is illustrated):

l0, ψ0ψ1ψ2 l0,¬ψ0ψ1¬ψ2 l0,¬ψ0¬ψ1ψ2

Problem: spurious self-loop
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Modified Semantics: Restricted Delay Step

Given: S,C, c̃

A delay step (l, ν) δ
−→ (l, (ν + δ)) is a restricted delay step iff it crosses

the border of the current clock region:

∃x ∈ C. ∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + δ ≥ k)

Restricted transition relation: ⇒R ⊆ (L,VC)× (L,VC)

The second delay step in the previous trace is disallowed:

(l0, x = 0)⇒R(l0, x = 1/2) 6⇒R(l0, x = 3/4)⇒R(l0, x = 1)⇒R(l1, x = 1)

Theorem:

[[ϕ]]Mϑ = [[ϕ]]MR

ϑ
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Abstraction is Sound & Complete

Given: M = 〈SC , P,⇒, sC0 〉 a transition system

Ψ a set of predicates

M+
Ψ,M

−
Ψ the over-/under-approximations

Theorem: γ([[ϕ]]M
−

Ψ ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M
+
Ψ)

Theorem:

If (∀ψ ∈ Ψ. ψν1 ⇔ ψν2) ⇒ ν1≡S ν2

Then [[ϕ]]
M−

Ψ

ϑ = [[ϕ]]
M+

Ψ

ϑ
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Refinement of the Abstraction

• Basis Ψ̂: the ”exact” abstract transition system can be computed
Not practicable

• Successive approximation of the abstract transition relation:

Algorithm: refine approximation

INPUT M, Ψ̂, ϕ
CHOOSE Ψ ⊆ Ψ̂

WHILE l0 6∈ [[ϕ ]]
M−

Ψ /? YES ?/

∧ l0 6∈ [[¬ϕ ]]
M−

Ψ /? NO ?/

CHOOSE ψ ∈ Ψ̂ \Ψ

Ψ := Ψ ∪ {ψ}
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Example (Refinement)

ϕ := ¬∃ (tt Uat l2)

Ψ := {x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤ 1, y ≥ 1, x > y, x < y}

I. ψ0 ≡ x = 0

l0, ψ0

l0,¬ψ0

l1, ψ0

l1,¬ψ0

l2, ψ0

l2,¬ψ0

M+
{x=0}

?

|= ϕ NO

τ =
(
(l0, ψ0)⇒

+(l1, ψ0)⇒
+(l1,¬ψ0)⇒

+(l2,¬ψ0)
)
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Example – Continuation I.

τ = ((l0, ψ0)︸ ︷︷ ︸
s0

⇒+ (l1, ψ0)︸ ︷︷ ︸
s1

⇒+ (l1,¬ψ0)︸ ︷︷ ︸
s2

⇒+ (l2,¬ψ0))︸ ︷︷ ︸
s3

Is there a corresponding counterexample on the concrete system?
∃ τ c = (y0⇒y1⇒y2⇒y3) s.t.
y0 ∈ γ(s0), y1 ∈ γ(s1), y2 ∈ γ(s2), y3 ∈ γ(s3), y0 = sc0

F:= y0 ∈ γ(s0) ∧ y1 ∈ γ(s1) ∧ y2 ∈ γ(s2) ∧ y3 ∈ γ(s3) ∧

y1⇒y2 ∧ y2⇒y3 ∧ y0 = sc0

Is F satisfiable?
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Example – Continuation II.

Here F is unsatisfiable!

y0 ∈ (l0, x = y = 0) ∈ γ(s0)

⇓

y1 ∈ (l1, x = 0∧ 0 ≤ y ≤ 1) ∈ γ(s1)

⇓

y2 ∈ (l1, x > 0∧ y > x) ∈ γ(s2)

6⇓

y3 ∈ (l1, x > 0∧ y ≥ 0) = γ(s3)

Choose ψ1 ∈ Ψ s.t. ∀ y ∈ γ(sk), y′ ∈ γ(sk+1). y 6⇒y′

Here: k = 2 ψ1 ≡ x > y
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Example – Continuation III.

New approximation M+
{x=0,x>y}

Satisfies formula ϕ = ¬∃ (tt Uat l2)

l0, ψ0 ∧¬ψ1

l0,¬ψ0 ∧ψ1

l1, ψ0 ∧¬ψ1

l1,¬ψ0 ∧¬ψ1

Algorithm terminates with true
(l0, x = y = 0) ∈ [[¬∃ (tt Uat l2)]]

M
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Summary on Predicate Abstraction for Real-Time

What can be verified?

Safety (known before)

Liveness (!)

Observations:

• self-loops problem:
solved by restricting the delay steps in concrete system

• logic is un-timed and without next

• a weaker assumption than non-zenoness suffices
(only restrict infinite sequences of delay steps)
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Summarizing...

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]
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What was Known, What was New?
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What is (still) to be Done

Model checking engine for HTAs

I future work of Alexandre David, Uppsala University

Exploiting HTAs via re-use

Isimilar to re-use in modecharts (Rajeev Alur et al.)

similar to CBR technique in VISUALSTATE (Gerd Behrmann et al.)

time gives rise to difficulties

Sound abstraction step from UML statecharts to the HTA formalism

I Clearly requires approximation of data and events

Implement the successive refinement idea for timed automata
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Conclusion – on Real-Time Systems

Hierarchies complicate—but do not hinder—the formal analysis;
whether they also can be exploited remains to be seen

Fully automated analysis is expensive but often feasible for
reasonably sized models
(which implies that formal methods should be applied a priori)

Predominant efficiency gain is via abstractions;
Techniques that approximate timed systems can go beyond safety
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Outline of the Thesis

Part I: Modeling of Real-Time Systems

1. The unified modeling language (UML) and statecharts (overview)

2. The language of UPPAAL (trace-based semantics)

3. Hierarchical timed automata [NWPT’01,FASE’02,journal submission]

Part II: Algorithmic Verification of Real-Time Systems

4. Real-time model checking: forward analysis (correctness formalization)

5. Optimization techniques for real-time systems (benchmarks)

6. Model augmentation to speed-up model checking [TPTS’01]

7. Predicate abstraction for dense real-time [TPTS’01]

Part III: Making Use of Hierarchical Structure

8. Construction of good hierarchies from parallel components [CHARME’01]

9. Flattening hierarchical timed automata for model checking
[NWPT’01,FASE’02,journal submission]
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