Formal Verification of UML Statecharts with Real-Time Extensions

¹Alexandre David ²M. Oliver Möller ¹Wang Yi ¹ Uppsala University ² ≣BRICS Århus

{adavid, yi}@docs.uu.se omoeller@brics.dk

Outline:

- 1 UML, Statecharts, and Time
- 2 Semantics for Formal Verification
- 3 Verifying a Pacemaker with UPPAAL

Unified Modeling Language (UML)

Born from unification of other methods (*Booch, OMT, OOSE*) Different *views* of a system:

- A) user view use case diagrams
- B) structural view class diagrams
- C) behavioral view statecharts
- D) environmental view deployment diagrams
- E) implementation view component diagrams
- An evolving standard: 1.3 finished 2000
 - 1.4 finished 2001
 - 2.0 work in progress (4 RFP issued May/Sept)

The Statechart Formalism

Features

- hierarchical state machines
- parallelism (on any level)
- history
- event communication
- powerful synchronization mechanisms
- inter-level transitions
- actions that are dependent on states
- actions on entry/exit
- ...

Restricted Statechart Formalism

Current restricted features

- hierarchical state machines
- parallelism (on any level)
- history
- no event communication
- no sync states
- **no** inter-level transitions
- **no** actions that are dependent on states
- no actions on entry/exit

instead:

- hand-shake style synchronization
- shared variables

Real-Time Extensions

- Clocks
- (timed) Guards

A Word on Semantics

UML-statecharts:

- informal (textual) semantic statements
- ambiguity of text
- variations over 1.3 / 1.4 / 2.0
- implementations make user-driven choices

our formalism:

- rule-based, formal semantic
- unambiguous
- not identical, makes clear choices
- any given formal statechart semantic should be "easy" to translate into it

Semantic Rules (example)

configuration: $\langle \rho, \mu, \nu, \theta \rangle$ with ρ : control locations

 μ : valuation of integer variables

u: valuation of clocks

 θ : history

operation:

$$t: l \xrightarrow{g,s,r,u} l', \rho, \mu, \nu \text{ a transition}$$

$$g(\mu,\nu) \quad \underbrace{\text{\textit{JoinEnabled}}(\rho,\mu,\nu,l) \quad \text{\textit{Inv}}(\rho^{\mathcal{T}_t},\nu^{\mathcal{T}_t}) \quad \neg \textit{EXIT}(l')}_{(\rho,\mu,\nu,\theta)} \quad \text{\textit{action}}$$

Model Checking

M: description of the system

arphi : desired property

- easier than proving a general theorem
- completely automatic ('yes' or counterexample)
- efficient algorithms tailored for classes of problems

Real-Time Model Checking with UPPAAL

clock x; int count

Only subset of TCTL supported:

E<> φ reachability

A[] φ safety (invariantly φ)

E[] φ possibly always φ

A<> φ inevitably φ

A[] $\varphi \Rightarrow$ A<> ψ unbounded response

 φ,ψ : propositional formula over locations and (existing) clocks

From (timed) Statecharts to UPPAAL

Rhapsody timed Statechart hierarchical model

informal description

HTA model

TA-close hierarchy formal semantics

TA model flatten(M_H)

11

MODEL-CHECK

formal semantics

OLIVER MÖLLER: FORMAL VERIFICATION OF UML STATECHARTS WITH REAL-TIME EXTENSIONS

From (timed) Statecharts to UPPAAL

Guiding Principle: Make it easy to adjust to small changes

Soundness & Correctness

Translations introduce slack. Thus

$$M_H \models \varphi \quad \not\Leftrightarrow \quad \textit{flatten}(M_H) \models \textit{flatten}(\varphi)$$

but

$$M_H \models \varphi \qquad \Leftrightarrow \qquad \textit{flatten}(M_H) \models_{project(M)} \textit{flatten}(\varphi)$$

timed transition system

timed
$$M_H$$
 traces

timed flatten(M) traces

 \downarrow project to M_H

timed M_H traces

Outline of the Flattening

3 phases to flatten a hierarchical structure:

- Collect instantiations
 every superstate becomes one (flat) timed automaton
- 2. Compute global joins mimic synchronization-on-exit in the flat automata *principle:* use counters & and add threshold-guard
- 3. Post-process channel communication a transitions may not synchronize with its own superstate principle: duplicate channels & restrict scope

Example: Flattening the Model of a Human Heart

inner superstate

outer superstate

Communication Conflict

- cannot keep c
- cannot remove c

- rename c inside
- rename c outside
- modify other transitions:
 either choose one of c₋1, c₋2
 or duplicate transition (allow both)

Model-Checking a Pacemaker

Human Heart

Pacemaker

Flattening of the Pacemaker Model

	HTA model	UPPAAL model
# XML tags	564	1191
# proper control locations	35	45
# pseudo-states / committed locations	33	63
# transitions	47	177
# variables and constants	33	72
# formal clocks	6	6

Model-Checking the Pacemaker

- DEADLOCK: possible (if heart stops)
- SAFETY:

A[] ¬heart stops only true for 'good' medic

LIVENESS:

A[] Vcontract => A<> Acontract

Model-Checking the Pacemaker

- DEADLOCK: possible (if heart stops)
- SAFETY:

A[] ¬heart stops only true for 'good' medic

LIVENESS:

A[] Vcontract => A<> Acontract

Parameters:

REFRACTORY_TIME = 50 SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50 DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

 $MODE_SWITCH_DELAY = 66$

E.g. for MODE_SWITCH_DELAY = 65, A[] ¬heart stops is violated

Related Work

- Variations of the statechart formalism
 e.g., in 1994, von der Beeck lists 21 different statecharts
 and distinguishes them in 26 criteria
- Timed extension of statecharts
 e.g., work of Kesten/Pnueli, Petersohn, and others
- UML profile for Schedulability, Performance and Time general time model, both discrete and continuous no progress notion with invariants
- realizations of UML, that extend the standard e.g., the Rhapsody tool has timers

Our Formalism in the European WOODDES Project

Workshop for Object-Oriented Design and Development of Embedded Systems

Partners:

- **II** PSA
- Mecel
- **CEA**
- I-Logix
- Intracom
- Offis
- Uppsala
- Aalborg

Objectives:

- UML Real-Time profile
- WOODDES methodology & tool platform

OLIVER MÖLLER: FORMAL VERIFICATION OF UML STATECHARTS WITH REAL-TIME EXTENSIONS

23

Conclusions & Future Work

Status

- XML grammar
- semantics
- flattening

Future Work

- formal proof for semantic correspondence
- implementation of an hierarchical editor
- integrate HTAs in the UPPAAL tool

References

- [AD94] R. Alur and D.L. dill. A Theory of Timed Automata. In *Theoretical Computer Science*, number 125, 1994
- [vdB94] Michael von der Beeck. A Comparison of Statechart Variants. In de Roever Langmaack and Vytopil, editors, Formal Techniques in RealTime and Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science, pages 128–148. Springer-Verlag, 1994.
- [D99] Bruce Powel Douglass. Real-Time UML, Second Edition Developing Efficient Objects for Embedded Systems. *Addison-Wesley, 1999*
- [DM01] Alexandre David and M. Oliver Möller. From Hierarichcal Timed Automata to UPPAAL. Research Series RS-01-11, BRICS, Department of Computer Science, University of Aarhus, March 2001. see http://www.brics.dk/RS/01/11/index.html.
- [OMG] Unified Modeling Language, version 1.4. Download from http://www.omg.org
 [WOODDES] WOODDES web page: http://wooddes.intranet.gr