
Electronic Notes in Theoretical Computer Science 65 No. 6 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 20 pages

Predicate Abstraction for Dense Real-Time
Systems ?

M. Oliver Möller a, Harald Rueß b, and Maria Sorea b,1

a BRICS, University of Aarhus, Department of Computer Science, Ny Munkegade,
Building 540, 8000 Århus C, Denmark 2

b SRI International, Computer Science Laboratory, 333 Ravenswood Avenue,
Menlo Park, CA 94025, USA

Abstract

We propose predicate abstraction as a means for verifying a rich class of safety and
liveness properties for dense real-time systems. First, we define a restricted seman-
tics of timed systems which is observationally equivalent to the standard semantics
in that it validates the same set of µ-calculus formulas without a next-step oper-
ator. Then, we recast the model checking problem S |= ϕ for a timed automaton
S and a µ-calculus formula ϕ in terms of predicate abstraction. Whenever a set of
abstraction predicates forms a so-called basis, the resulting abstraction is strongly
preserving in the sense that S validates ϕ iff the corresponding finite abstraction
validates this formula ϕ. Now, the abstracted system can be checked using familiar
µ-calculus model checking. Like the region graph construction for timed automata,
the predicate abstraction algorithm for timed automata usually is prohibitively
expensive. In many cases it suffices to compute an approximation of a finite bisim-
ulation by using only a subset of the basis of abstraction predicates. Starting with
some coarse abstraction, we define a finite sequence of refined abstractions that con-
verges to a strongly preserving abstraction. In each step, new abstraction predicates
are selected nondeterministically from a finite basis. Counterexamples from failed
µ-calculus model checking attempts can be used to heuristically choose a small set
of new abstraction predicates for refining the abstraction.

1 Introduction

Timed Automata [2] are state-transition graphs augmented with a finite set
of real-valued clocks. The clocks proceed at a uniform rate and constrain

? This research was supported by the National Science Foundation under grants CCR-00-
82560 and CCR-00-86096. Most of this research has been conducted while the first author
was visiting SRI International, July/August 2001.
1 Also affiliated with Universität Ulm, Germany.
2 Basic Research in Computer Science, funded by the Danish National Research Founda-
tion.

c©2002 Published by Elsevier Science B. V.

Möller,Rueß, Sorea

the times at which transitions may occur. Given a timed automaton and a
property expressed in a timed logic such as TCTL [1] or Tµ[11], model checking
answers the question whether or not the timed automaton satisfies the given
formula. The fundamental graph-theoretic model checking algorithm by Alur,
Courcoubetis and Dill [1] constructs a finite quotient, the so-called region
graph, of the infinite state graph. Algorithms directly based on the explicit
construction of such a partition are however unlikely to perform efficiently
in practice, since the number of equivalence classes of states of the region
graph grows exponentially with the largest time constant and the number of
clocks that are used to specify timing constraints. A recent overview of data
structures for representing regions in a symbolic way together with algorithms
and tools for verifying real-time systems is given, for example, by Yovine [20].

We propose a novel algorithm for verifying a rich class of safety and liveness
properties of timed automata based on computing finite abstractions of timed
automata, model checking, and successive refinement of abstractions. Without
sacrificing completeness, this algorithm does usually not require to compute
the complete region graph in order to decide model checking problems. In the
worst case, it terminates with a strongly preserving abstraction of the given
model checking problem.

The computation of finite approximations of timed systems is based on
the concepts of abstract interpretation [5], and, in particular, of predicate ab-
straction [10]. Given a transition system and a finite set of predicates, this
method determines a finite abstraction, where each state of the abstract state
space is a truth assignment to the abstraction predicates. The abstraction is
conservative in the sense that a propositional µ-calculus formula holds for the
concrete system if it holds for the predicate-abstracted system [17]. Since the
reverse statement does not hold in general, predicate abstraction has so far
mainly been used to only prove safety but not liveness properties.

The main problem with applying predicate abstraction in general is to
come up with an appropriate set of abstraction predicates. In the case of timed
automata, we show that a set of abstraction predicates expressive enough to
distinguish between any two clock regions determines a strongly preserving
abstraction, in the sense that the timed system satisfies the property un-
der consideration if and only if the predicate-abstracted system satisfies this
property. The main technical problem in the definition of the abstraction is
to guarantee fairness in the abstract model; that is, to prevent delay steps to
be abstracted into self-loops on the abstract system. Uribe [19] distinguishes
between three different approaches in the literature for building fairness into
the abstraction: first, by adding new fairness constraints to the abstract sys-
tem, second, by incorporating fairness into the logic, and third, by modifying
the finite-state model checker. We present a forth approach that addresses
this problem by introducing a certain restriction on delay steps, and we show
that the corresponding restricted semantics of timed automata is equivalent to
a time-progressing semantics in the sense that these different interpretations

2

Möller,Rueß, Sorea

validate the same set of propositional µ-calculus formulas (without next-step
operator). Altogether, our predicate abstraction algorithm determines a de-
cision procedure for checking whether or not a timed automata satisfies some
given µ-calculus formula.

The set of abstraction predicates required to compute a strongly preserv-
ing abstraction, a so-called basis, can still be excessively large. Starting with a
trivial over-approximation, we successively select abstraction predicates from
the finite basis. Counterexamples from failed model checking attempts are
used in guiding the selection. The idea of counterexample-guided refinement
has been used before by many researchers, and recent work includes [4,7,14]. In
contrast to these approaches, we use the counterexample only as a heuristic for
selecting good pivot predicates from a fixed, predetermined pool of abstraction
predicates in order to speed-up convergence of the approximation processes.
Also, verification techniques for infinite-state systems based on predicate ab-
straction [10,3,17] are usually incomplete. Our abstraction method for timed
systems, however, is complete, since, in the limit, we construct a finite sys-
tem that satisfies the same set of formulas under consideration as the original
timed system.

Dill and Wong-Toi [8] also use an iteration of both over- and under-
approximations of the reachable state set of timed automata, but their tech-
niques are limited to proving invariants. Based on techniques of predicate
abstraction, Namjoshi and Kurshan’s algorithm [16] computes a finite bisimu-
lation whenever it exists. Thus, in principle, their algorithm could be applied
to compute finite bisimulations of timed automata. Currently it is unclear,
however, if their approach is applicable in practice. Tripakis and Yovine [18]
show how to abstract dense real-time in order to obtain time-abstracting, fi-
nite bisimulations. Whenever it suffices to compute rather coarse abstractions,
we expect to obtain much smaller transition systems by means of predicate
abstraction and refinement of predicate abstractions.

The paper is structured as follows. In Section 2 we review the basic notions
of timed automata including a natural semantics based on a nonconvergence
assumption of time. We also define the notion of restricted delay steps and
show that this restricted semantics of a timed automata is observationally
equivalent to the natural semantics. The restricted semantics is used to define
finite over- and under-approximations of timed systems in Section 3. In Sec-
tion 4, we introduce the concept of a basis as a set of abstraction predicates
expressive enough to distinguish between any two different clock regions, and
we show that for predicate abstraction with a basis as abstraction predicates,
the approximation is exact with respect to the next-free µ-calculus. Then, in
Section 5, we define a terminating algorithm for iteratively refining abstrac-
tions until the given property is either proved or refuted. Finally, Section 6
contains some concluding remarks.

For lack of space we usually omit proofs, but detailed proofs can be found
in an extended version of this paper [15].

3

Möller,Rueß, Sorea

l0
y ≤ 1

l1 l2

x := 0

x := 0 y > xy := 0

x > y

Fig. 1. Example of a Timed System.

2 Timed Systems

We review some basic notions of transition systems and timed systems. Fur-
thermore, we introduce the notion of time-progressing systems, and show that
delay steps in these systems are not observable in a version of the proposi-
tional µ-calculus without a next-step operator. These results set the stage for
proving completeness of our abstraction techniques in Section 5.

The model of timed system as defined below is motivated by the timed
automata model as introduced by Alur, Courcoubetis, and Dill [1]. 3 Clocks
for measuring time are encoded as variables, which are interpreted over the
nonnegative reals IR+

0 . Transitions of timed systems are usually constrained
by timing constraints.

Definition 2.1 [Timing Constraints] Given a set of clocks C, the set of timing
(or clock) constraints Constr comprises true, x ./ d, and x − y ./ d, where
x, y ∈ C, d ∈ IN , ./∈ {≤, <,=, >,≥}. The set Inv is the subset of Constr ,
where ./ is chosen from {≤, <}. For a positive integer c, Constr(c) is the
finite subset of all timing constraints x ./ d, x − y ./ d, where x, y ∈ C,
./ ∈ {<,≤,=,≥, >} and d ∈ {0, . . . ,c}.

Definition 2.2 [Timed Systems] Given a finite set of propositional symbols
A, a timed system S is a tuple 〈L, P,C, T, l0, I〉, where

• L is a nonempty finite set of locations,

• P : L→ ℘ (A) maps each location to a set of propositional symbols,

• C is a finite set of clocks,

• T ⊆ L× ℘ (Constr)× ℘ (C)× L is a transition relation,

• l0⊆L is the initial location,

• and I : L → ℘ (Inv) assigns a set of downward closed clock constraints to
each location l; the elements of I(l) are the invariants for location l.

We write l
g,r
−→l′ for 〈l, g, r, l′〉 ∈ T . Firing a transition does not only change

3 For simplicity, we do not consider (synchronized) networks of timed automata. The
results of this paper, however, can be extended for such networks.

4

Möller,Rueß, Sorea

the current location but also resets the clocks in r to 0. A transition may only
be fired if the timing constraint (guard of the transition) g holds with respect
to the current value of the clocks, and if the invariant of the target location
is satisfied with respect to the modified value of the clocks.

Example 2.3 A timed system with three locations l0, l1, l2 and two clocks x,
y is displayed in Figure 1. The initial location is l0, transitions are decorated
with both timing constraints and clock resets such as x := 0. The invariant
for location l0 is y ≤ 1. Timing constraints that are true are omitted.

A function ν : C → IR+
0 is a clock evaluation, and the set of clock evalu-

ations is collected in VC . The clock evaluation (ν + δ) is obtained by adding
δ to the value of each clock in ν. For X ⊆ C, ν[X:=0] denotes the clock
evaluation that updates every clock x ∈ X to zero, and leaves all the other
clock values unchanged. The value gν of a clock constraint g with respect
to the clock evaluation ν is obtained by substituting the clocks x in g with
the corresponding value ν(x). If gν simplifies to the true value, ν satisfies g
and we write ν |≈ g. A set X ⊆ VC of clock evaluations satisfies g ∈ Constr ,
written as X |≈ g, if and only if ν |≈ g for all ν ∈ X . A pair (l, ν) ∈ L× VC is
called a timed configuration, if it satisfies the invariants I(l); formally, ν |≈ I(l)
iff ν |≈ g for every invariant g ∈ I(l).

Alur, Courcoubetis, and Dill [1] introduce the fundamental notion of clock
regions, which partition the space of possible clock evaluation for a timed
automaton into finitely many regions.

Definition 2.4 [Clock Regions] Let S be a timed system with clocks C and
largest constant c occurring in any timing constraint of S. A clock region
is a set X ⊆ VC of clock evaluations, such that for all timing constraints
g ∈ Constr(c) and for any two ν1, ν2 ∈ X it is the case that ν1 |≈ g if and only
if ν2 |≈ g. In this case we write ν1≡S ν2.

A timed step is either a delay step, where time advances by some positive
real-valued δ, or an instantaneous state transition step.

Definition 2.5 [Timed Steps] Let S be a timed system with clock set C and
transition relation T . For δ > 0, we say that the timed configuration (l, ν+δ) is

obtained from (l, ν) by a delay step (l, ν)
δ
−→(l, ν+δ), if the invariant constraint

ν+ δ |≈ I(l) holds. A state transition step (l, ν)
g,r
−→(l′, ν ′) occurs if there exists

a l
g,r
−→l′ ∈ T , and ν |≈ g, ν ′ = ν[r:=0], and ν ′ |≈ I(l′). The union of delay

and state transition steps defines the timed transition relation ⇒ of a timed
system S. Now, a path (or trace) is an infinite sequence of configurations
s0⇒s1⇒

Timed systems, as defined above, allow for infinite sequences of delay steps
without ever exceeding some given bound. The sequence

(l, x = 0)
1/2
=⇒ (l, x = 1/2)

1/4
=⇒ (l, x = 3/4)

1/8
=⇒ (l, x = 7/8) · · · (∗)

5

Möller,Rueß, Sorea

l0
x ≤ 1

l1
x = 1

Fig. 2. Timed System for Example 2.6.

for example, never reaches time point 1. Systems with traces such that an infi-
nite number of steps may happen in a bounded time frame are said to be zeno.
This kind of behavior is usually ruled out by restricting possible behaviors to
nonzeno only. In order to preserve faulty behavior that is caused by an infinite
sequence of state transition steps, we use a slightly weaker assumption than
nonzenoness. We only consider paths which satisfy the following assumption.

Assumption 1 (Nonconvergence of Time) In every infinite sequence of
delay steps, the evaluation of every clock eventually exceeds every bound.

In the sequel we build time-abstractions which do not distinguish between
state transition steps and delay steps. The main difficulty in defining such
abstractions is to prevent delay steps to be abstracted into self-loops on the
abstract system.

Example 2.6 Consider the timed system in Figure 2. Under the nonconver-
gence assumption this system satisfies the property that location l1 is always
reached. For example, the following sequence is the prefix of a possible trace
of this system.

(l0, x = 0)
1/2
=⇒ (l0, x = 1/2)

1/4
=⇒ (l0, x = 3/4)

1/4
=⇒ (l0, x = 1)

true,∅
=⇒ (l1, x = 1)

We abstract the timed system from Figure 2 using the three abstraction pred-
icates ψ0 ≡ x = 0, ψ1 ≡ x < 1, and ψ2 ≡ x = 1. On the abstract system the
single state transition step of the timed system is split according to whether
or not these predicates hold. For example, in the initial abstract configuration
only ψ0 and ψ1 hold, since the value of the clock in the initial concrete state is
zero. Now, corresponding to delay steps with delay less than one, there is an
abstract transition to a state where only ψ1 holds. Using small enough delay
steps one remains in this state or one reaches a state in which only ψ2 holds,
that is, the clock value is exactly one. A fragment of the resulting abstract
transition system is given below.

(l0, ψ0ψ1¬ψ2) (l0,¬ψ0ψ1¬ψ2) (l0,¬ψ0¬ψ1ψ2) (l1,¬ψ0¬ψ1ψ2)

Notice the self-loop at configuration (l0,¬ψ0ψ1¬ψ2), which has not been present
in the concrete system. For the presence of this loop, it no longer holds for the
abstracted system that on every possible path a configuration with location
l1 is reached eventually.

In order to avoid such extraneous self-loops, the nonconvergence assump-

6

Möller,Rueß, Sorea

tion must somehow be incorporated into the abstract system. Such a restric-
tion, however, can not be defined by means of time delays in the abstract
system for the simple reason that there is no notion of time or time delay
on this level. In our approach, we enforce the nonconvergence assumption
explicitly by restricting the model of timed system to delay steps that force a
clock to step beyond integer bounds when all fractional clock values are not
zero. In this way, the second and third delay step of the trace (∗) above, for
example, are explicitly ruled out.

Definition 2.7 [Restricted Delay Step] For a timed system S with clock set C

and largest constant c, a restricted delay step is a delay step (l, ν)
δ
−→ (l, ν+δ)

for all positive, real-valued δ, such that

∃x ∈ C.∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + δ ≥ k)(1)

The union of state transition steps and restricted delay steps gives rise to a
relation⇒R ⊆ (L,VC)×(L,VC). Now, a restricted path is an infinite sequence
of configurations s0⇒Rs1⇒R

Obviously, it is the case that ⇒R is a subrelation of ⇒. However, the re-
striction of delay steps above does not necessarily enforce time to progress, as
demonstrated by the following restricted path for the system in Example 2.3.

(l0, x = y = 0)
true,∅
=⇒ (l1, x = y = 0)

true,∅
=⇒ (l0, x = y = 0)

true,∅
=⇒ (l1, x = y = 0) · · ·

Note that a loop of state transition steps is required in order to prevent the
clocks x and y from exceeding the clock value 0.

Corresponding to the nonconvergence assumption on timed traces and the
restricted delay steps we associate two semantics for timed systems in terms
of transition systems. The natural semanticsM includes arbitrary delay steps
under the nonconvergence of time assumption, while the restricted semantics
MR includes only restricted delay steps as in Definition 2.7.

Definition 2.8 [Semantics of Timed Systems] Let S = 〈L, P,C, T, l0, I〉 be a
timed system. We associate with S two transition systems

M := 〈L× VC , P, (⇒), (l0, ν0)〉

MR := 〈L× VC , P, (⇒R), (l0, ν0)〉

The symbol ν0 denotes the clock evaluation, that maps every clock to 0. M is
called the natural semantics, andMR is referred to as the restricted semantics
of S.

We demonstrate that the restriction of delay steps does not change the possible
observations of the model with respect to µ-calculus formulas without next-
step operators.

2.1 Definition of Next-Free µ-Calculus

The µ-calculus [13] is a branching-time temporal logic, where formulas are
built from atomic propositions, boolean connectives, the least-fixpoint opera-

7

Möller,Rueß, Sorea

tor, and the next-step operator ©ϕ, which expresses the fact that there is a
successor satisfying ϕ. Our main interest in removing the next-step operator
stems from the fact that we do not want to distinguish between one delay
step of duration, say, 1 and two subsequent delay steps of durations 2/5 and
3/5, since these traces are considered to be observationally equivalent. Logics
without explicit next-step operator have also been considered, for example, by
Dams [6] and Tripakis and Yovine [18].

Definition 2.9 [Next-Free µ-Calculus] Let A be a set of atomic predicates,
and Var be a set of variables; then, for p ∈ A and Z ∈ Var, the set Lµ of
next-free µ-calculus formulas is described by the grammar

ϕ ::= tt | p | ϕ ∧ ϕ | ¬ϕ | ∃ (ϕUϕ) | ∀ (ϕUϕ) | Z | µZ.ϕ

Formulas are assumed to be syntacticaly monotonic, that is, every variable is
assumed to appear under an even number of negations, in order to guarantee
the existence of the fixpoints under consideration. A sentence is a formula
without free variables.

Intuitively, an existential until formula ∃ (ϕ1 Uϕ2) holds in some configu-
ration s iff ϕ1 holds until ϕ2 holds on some path starting from s. Similarly,
a universal until formula ∀ (ϕ1 Uϕ2) holds in s if this conditions holds for all
paths from s.

Given a transition system M = 〈S, P,⇒R, s0〉, the semantics of a next-
free µ-calculus sentence is given by the set of timed configurations [[ϕ]]Mϑ for
which the formula holds. Subformulas containing free variables Z ∈ Var are
dealt with using valuation functions ϑ : Var → ℘ (S). The updating notation
ϑ[Z := s] denotes the valuation ϑ′ that agrees with ϑ on all variables except
Z, where ϑ′(Z) = s ⊆ S.

Definition 2.10 [Semantics of the Next-Free µ-Calculus] Given a transition
system M = 〈S, P,⇒R, s0〉 over the set S = L × VC of timed configurations
and an assignment ϑ : Var → ℘ (S), the set of configurations [[ϕ]]Mϑ validating
a formula ϕ ∈ Lµ with respect to ϑ is defined inductively on the structure of
ϕ.

[[tt]]Mϑ :=S

[[p]]Mϑ := {(l, ν) ∈ S | p ∈ P (l)}

[[ϕ1 ∧ϕ2]]
M
ϑ := [[ϕ1]]

M
ϑ ∩ [[ϕ2]]

M
ϑ

[[¬ϕ]]Mϑ :=S \ [[ϕ]]Mϑ
[[∃ (ϕ1 Uϕ2)]]

M
ϑ := {s ∈ S | for some path τ = (s0⇒s1⇒ . . .)

with s0 = s, for some i ≥ 0, si ∈ [[ϕ2]]
M
ϑ

and sj ∈ [[ϕ1]]
M
ϑ for 0 ≤ j < i}

[[∀ (ϕ1 Uϕ2)]]
M
ϑ := {s ∈ S | for every path τ = (s0⇒s1⇒ . . .)

with s0 = s, for some i ≥ 0, si ∈ [[ϕ2]]
M
ϑ

and sj ∈ [[ϕ1]]
M
ϑ for 0 ≤ j < i}

8

Möller,Rueß, Sorea

[[Z]]Mϑ :=ϑ(Z)

[[µZ.ϕ]]Mϑ :=∩{E ⊆ S | [[ϕ]]Mϑ[Z:=E] ⊆ E}

We writeM, s, ϑ |= ϕ to denote that s ∈ [[ϕ]]Mϑ . The subscript ϑ is omitted
whenever ϕ is a sentence.

Two configurations s and s′ are said to be indistinguishable if they satisfy
the same set of Lµ sentences.

Definition 2.11 [µ-Equivalence] For a transition system M, two configura-
tions s, s′ are µ-equivalent denoted by s≡M s′, if for every sentence ϕ ∈ Lµ:

s ∈ [[ϕ]]M if and only if s′ ∈ [[ϕ]]M.

The binary relation ≡M is indeed an equivalence relation on clock evaluations.
Moreover, µ-equivalence characterizes clock regions in the sense that two clock
evaluations are in the same clock region if and only if they are µ-equivalent.
Consequently, µ-equivalence is of finite index.

Lemma 2.12 Let S be a timed system with clock set C and largest constant
c, and let M be the corresponding natural transition system. Then for all
l ∈ L and clock evaluations ν, ν ′ ∈ VC with ν≡S ν

′ the time configurations
(l, ν) and (l, ν ′) are µ-equivalent, that is (l, ν)≡M (l, ν ′).

The proof works by a straightforward structural induction on ϕ. We now
show that the natural semantics and the restricted semantics of a timed sys-
tem as introduced in Definition 2.8 are indistinguishable in the next-free µ-
calculus. Intuitively, sentences in Lµ can not distinguish quantitative values
of clocks, and therefore all configurations with identical control locations and
µ-equivalent clock evaluations satisfy the same set of Lµ sentences.

Theorem 2.13 Let S be a timed system with clocks C, largest constant c,
natural semantics M, and restricted semantics MR. Under the nonconver-
gence assumption for M, for every sentence ϕ ∈ Lµ:

[[ϕ]]M = [[ϕ]]MR

Proof. Again, the proof is by induction on ϕ. The only interesting cases are
the ones for the until formulas. Thus, consider ϕ to be of the form ∃ (ϕ1 Uϕ2).
According to Definition 2.10, s ∈ [[∃ (ϕ1 Uϕ2)]]

M
ϑ iff there exists an path start-

ing at s such that

si ∈ [[ϕ2]]
M
ϑ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]

M
ϑ(2)

Since every path in the restricted semantics is also a path in the natural
semantics, it suffices to show that for every path in the natural semantics
which validates (2), there exists a path in the restricted semantics which also
validates (2). First, we show that a delay step in⇒\⇒R does not step across

the border of any region. Let (l, ν)
δ
−→(l, ν + δ) be a delay step inM but not

9

Möller,Rueß, Sorea

in MR. Then by Definition 2.7:

¬ (∃x ∈ C. ∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + δ ≥ k))

⇔ ∀x ∈ C. ∀k ∈ {0, . . . , c}. (ν(x) 6= k ∧ (ν(x) < k ⇒ ν(x) + δ < k))

⇔ ∀x ∈ C. bν(x)c < ν(x), ν(x) + δ < bν(x) + 1c

Consequently, it is the case that ν≡S (ν + δ). Using Lemma 2.12, for (s, s′) ∈
⇒ \⇒R it holds that s≡M s′. Now, consider a finite path τ = (s1⇒ . . .⇒si)
with si ∈ [[ϕ2]]

M
ϑ and ∀ 1 ≤ j < i. sj ∈ [[ϕ1]]

M
ϑ . We transform this path τ to a

restricted path τR by removing the steps not contained in⇒R and by merging
adjacent delays. Using Lemma 2.12, all se+f = (le+f , νe+f) with le+f = le and
νe+f ≡S νe, are µ-equivalent, that is, (le+f , νe+f)≡M (le, νe). Removing all
se+f with f ≥ 1 from τ yields the subpath

τR = (s1 = sk1⇒Rsk2 · · ·⇒Rskm = si), kh ∈ {1, . . . , i}, kh < kh+1

such that skm ∈ [[ϕ2]]
M
ϑ and for all h < m, skh ∈ [[ϕ1]]

M
ϑ . By induction

hypothesis, skm ∈ [[ϕ2]]
MR

ϑ and for all h < m, skh ∈ [[ϕ1]]
MR

ϑ . Since both
guards and invariants are timing constraints in Constr , they have identical
truth values for the clock evaluations of se and se+f . Thus every step sk1⇒Rsk2
is indeed possible according to the restricted semantics, and τR is a restricted
path. Thus [[∃ (ϕ1 Uϕ2)]]

M
ϑ = [[∃ (ϕ1 Uϕ2)]]

MR

ϑ . The proof for universal untils
is similar. 2

This result allows us to focus on the restricted semantics of timed systems
only, since any result expressible in Lµ for the restricted semantics MR also
holds for the natural semanticsM. In the sequel we omit the indices R; thus
the system M and the transition relation ⇒ denote a restricted system and
a restricted transition relation, respectively.

3 Predicate Abstraction of Timed Systems

Predicate abstraction [10,3,17] is used to compute a finite approximation of a
given infinite state transition system. The method is based on a set of abstrac-
tion predicates, which in our context are predicates over clock evaluations.

Definition 3.1 [Abstraction Predicates] Given a set of clocks C, an abstrac-
tion predicate with respect to C is any formula with the set of free variables
in C. Similarly to timing constraints, the value of an abstraction predicate ψ
with respect to a clock evaluation ν, where both free and bound variables are
interpreted in the domain C, is denoted by the juxtaposition ψν. Whenever
ψν evaluates to tt, we write ν |≈ψ.

A set of abstraction predicates Ψ = {ψ0, · · · , ψn−1} determines an abstraction
function α, which maps clock evaluations ν to a bitvector b of length n, such
that the i-th component of b is set if and only if ψi holds for ν. Here, we assume
that bitvectors of length n are elements of the set Bn, which are functions of

10

Möller,Rueß, Sorea

domain {0, · · · , n − 1} and codomain {0, 1}. The inverse image of α, that is,
the concretization function γ, maps a bitvector to the set of clock valuations
which satisfy all ψi whenever the i-th component of the bitvector is set. Thus,
a set of concrete states (l, ν) is transformed by the abstraction function α into
the abstract state α(l, ν), and an abstract state (l, b) is mapped by γ to a set
of concrete states γ(l, b).

Definition 3.2 [Abstraction/Concretization] Let C be a set of clocks and VC
the corresponding set of clock evaluations. Given a finite set of predicates
Ψ = {ψ0, · · · , ψn−1}, the abstraction function α : L× VC → L×Bn is defined
by

α(l, ν)(i) := (l, ψiν)

and the concretization function γ : L×Bn → L× ℘ (VC) is defined by

γ(l, b) := {(l, ν) ∈ L× VC | I(l) ∧
n−1∧

i=0

ψiν ≡ b(i)}.

We also use the notations α(S) := {α(l, ν) | (l, ν) ∈ S} and γ(SA) :=
{γ(l, b) | (l, b) ∈ SA}. Now, the abstraction/concretization pair (α, γ) forms a
Galois connection.

Definition 3.3 [Over-/Under-approximation] Given a (concrete) transition
system M = 〈SC , P,⇒, sC0 〉, where S

C = L× VC and sC0 = (l0, ν0), and a set
Ψ of abstraction predicates, we construct two (abstract) transition systems
M+

Ψ = 〈SA, P,⇒+, sA0 〉, and M
−
Ψ = 〈SA, P,⇒−, sA0 〉.

• SA := L×Bn

• (l, b)⇒+(l′, b′) iff

∃ν, ν ′ ∈ VC s.t. (l, ν) ∈ γ(l, b) ∧ (l′, ν ′) ∈ γ(l′, b′). (l, ν)⇒(l′, ν ′)

• (l, b)⇒−(l′, b′) iff

∀ν ∈ VC s.t. (l, ν) ∈ γ(l, b). ∃ν ′ ∈ VC s.t. (l′, ν ′) ∈ γ(l′, b′). (l, ν)⇒(l′, ν ′).

• sA0 := (l0, b0), where b0(i) = 1 iff ν0 |= ψi.

M+
Ψ is called an over-approximation, andM−

Ψ an under-approximation ofM.

Obviously, we have that ⇒−⊆⇒+.

Example 3.4 Figure 3 shows the over- and under-approximation of the (con-
crete) system from Figure 1 with respect to the predicate set Ψ = {x > y}.
The initial state is described by (l0,¬ψ), since in the initial location the value
of the clocks x and y is zero, and therefore x ≤ y holds. The transitions are
built according to definition 3.2. For example, the transition from (l1,¬ψ) to
(l0, ψ) in the over-approximation is not present in the under-approximation,
since for the evaluation ν with ν(x) = 0 and ν(y) = 0 and (l1, ν) ∈ γ(l1,¬ψ),
there exists no evaluation ν ′ with (l0, ν

′) ∈ γ(l0, ψ) such that (l1, ν)⇒(l0, ν
′).

For the transition relations ⇒− and ⇒+ we define γ(⇒−), respectively

11

Möller,Rueß, Sorea

l0, ψ

l1, ψ

l2, ψ

l0,¬ψ

l1,¬ψ

l2,¬ψ

a: Over-approximation

l0, ψ

l1, ψ

l2, ψ

l0,¬ψ

l1,¬ψ

l2,¬ψ

b: Under-approximation

Fig. 3. Approximations of the timed system from Figure 1 with ψ ≡ x > y.

γ(⇒+) as follows:

γ(⇒−) := {((l, ν), (l′, ν ′)) ∈ SC |

∃b, b′. (l, b)⇒−(l′, b′)∧ (l, ν) ∈ γ(l, b)∧ (l′, ν ′) ∈ γ(l′, b′)}

γ(⇒+) := {((l, ν), (l′, ν ′)) ∈ SC |

∃b, b′. (l, b)⇒+(l′, b′)∧ (l, ν) ∈ γ(l, b)∧ (l′, ν ′) ∈ γ(l′, b′)}

The next statement follows directly from Definition 3.3.

Lemma 3.5 For a (concrete) transition system M with the transition re-
lation ⇒ and the corresponding over- and under-approximations M+

Ψ, M
−
Ψ

with respective transition relations ⇒+, ⇒− it is the case that

(i) γ(⇒−) ⊆ ⇒ ⊆ γ(⇒+), and

(ii) ⇒− ⊆ α(⇒) ⊆ ⇒+.

Definition 3.6 [Predicate Abstraction] Let M = 〈SC , P,⇒, sC0 〉 be a transi-
tion system, and Ψ be a set of abstraction predicates. Consider, as given in
Definition 3.3, the over-approximationM+

Ψ = 〈SA, P,⇒+, sA0 〉, and the under-
approximation M−

Ψ = 〈SA, P,⇒−, sA0 〉 of M. Then, the predicate abstracted

semantics [[ϕ]]
Mσ

Ψ

ϑ , where σ is either + or −, of a formula ϕ ∈ Lµ with respect
to a valuation function ϑ and the finite transition systemsMσ

Ψ is defined in a
mutually inductive way. The notation σ̄ is used to toggle the sign σ.

[[tt]]
Mσ

Ψ

ϑ :=SA

[[p]]
Mσ

Ψ

ϑ :=
{
(l, b) ∈ SA | p ∈ P (l)

}

[[ϕ1 ∧ ϕ2]]
Mσ

Ψ

ϑ := [[ϕ1]]
Mσ

Ψ

ϑ ∩ [[ϕ2]]
Mσ

Ψ

ϑ

[[¬ϕ]]
Mσ

Ψ

ϑ :=SA \ [[ϕ]]
Mσ̄

Ψ

ϑ

[[∃ (ϕ1 Uϕ2)]]
Mσ

Ψ

ϑ := {s ∈ SA | for some path τ = (s0⇒
σs1⇒

σ . . .)

with s0 = s, for some i ≥ 0, si ∈ [[ϕ2]]
Mσ

Ψ

ϑ

and sj ∈ [[ϕ1]]
Mσ

Ψ

ϑ for 0 ≤ j < i}

[[∀ (ϕ1 Uϕ2)]]
Mσ

Ψ

ϑ := {s ∈ SA | for every path τ = (s0⇒
σ̄s1⇒

σ̄ . . .)

12

Möller,Rueß, Sorea

with s0 = s, for some i ≥ 0, si ∈ [[ϕ2]]
Mσ

Ψ

ϑ

and sj ∈ [[ϕ1]]
Mσ

Ψ

ϑ for 0 ≤ j < i}

[[Z]]
Mσ

Ψ

ϑ :=ϑ(Z)

[[µZ.ϕ]]
Mσ

Ψ

ϑ :=∩{E ⊆ SA | [[ϕ]]
Mσ

Ψ

ϑ[Z:=E] ⊆ E}

We also write Mσ
Ψ, (l, b), ϑ |=

A ϕ, to denote that (l, b) ∈ [[ϕ]]
Mσ

Ψ

ϑ .

Theorem 3.7 (Soundness of Abstraction) Let M = 〈SC , P,⇒, sC0 〉 be
a transition system, Ψ a set of abstraction predicates, andM+

Ψ,M
−
Ψ the over-

approximation and under-approximation of M with respect to Ψ. Then for
any sentence ϕ ∈ Lµ the following holds (γ denotes the concretization function
with respect to Ψ):

γ([[ϕ]]M
−
Ψ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M

+

Ψ)

Proof. The proof follows by induction on the structure of ϕ and makes use
of Lemma 3.5. 2

Example 3.8 Consider our running example in Figure 1, for which we want
to verify that location l2 is never reached. This property is expressed by the
µ-calculus formula ϕ := ¬∃ (tt U at l2), where at l2 ∈ A is a (boolean) propo-
sition that is true if the system is in location l2. According to Definition 3.6,
the set of abstract states of M−

{ψ} which validate ϕ is given by

[[¬∃ (tt U at l2)]]
M−
{ψ} =SA \ [[∃ (tt U at l2)]]

M+

{ψ} =

= {(l0, ψ), (l0,¬ψ), (l1,¬ψ)}

The over-approximation of M with respect to the abstraction predicate ψ ≡
(x > y) is shown in Figure 3. Since the initial state (l0,¬ψ) of M−

{ψ} is

contained in the set [[¬∃ (tt U at l2)]]
M−
{ψ} , the formula ϕ holds on the abstract

transition system. Thus,M−
{ψ}, (l0, b0) |=

A ϕ holds. By Theorem 3.7, property

ϕ also holds on the concrete transition system, M, (l0, ν0) |= ϕ.

An interesting aspect of this example is that [[ϕ]]M
−
{ψ} = [[ϕ]]M

+

{ψ} . We
now give a criterion, based on the notion of regions, for a set of abstraction
predicates, which is sufficient for guaranteeing convergence of the over- and
under-approximations in general.

4 Basis

A basis is a set of abstraction predicates that is expressive enough to distin-
guish between two clock regions. If a basis is used for predicate abstraction,
then the approximation is exact with respect to the next-free µ-calculus.

Definition 4.1 [Basis] Let S be a timed system with clock set C and let Ψ
be a set of abstraction predicates. Then Ψ is a basis with respect to S iff for

13

Möller,Rueß, Sorea

all clock evaluations ν1, ν2 ∈ VC

(∀ψ ∈ Ψ. ν1 |≈ψ ⇔ ν2 |≈ψ) implies ν1≡S ν2 .

For example, for a timed system S with clock set C and largest constant c,
the (infinite) set of clock constraints Constr , the (infinite) set of invariant
constraints Inv , the (finite) set of clock constraints Constr(c), and the (finite)
set of membership predicates for the quotient VC modulo ≡S are all basis
sets. Since the set of predicates Constr(c) is finite, there is a finite basis for
every timed automaton. Notice, however, that this basis is not necessarily
minimal.

Example 4.2 The set Ψ:={x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤ 1, y ≥ 1, x >
y, x < y} is a basis for the timed system in Figure 1.

Theorem 4.3 Let S be a timed system with clock set C and largest constant
c, andM the corresponding transition system. Let Ψ be a basis with respect
to S, andM−

Ψ,M
+
Ψ the under- and over-approximation ofM with respect to

Ψ. Then, for any sentence ϕ ∈ Lµ,

[[ϕ]]M
−
Ψ = [[ϕ]]M

+

Ψ .

Proof. Since it suffices to show that ⇒− ⊇ ⇒+, we assume two configura-
tions (l, b) and (l′, b′) such that (l, b)⇒+(l′, b′). According to Definition 3.3,
there exist ν, ν ′ ∈ VC such that (l, ν) ∈ γ(l, b) and (l′, ν ′) ∈ γ(l′, b′) such that
(l, ν)⇒(l′, ν ′).

First, in case (l, ν)⇒(l′, ν ′) holds due to a state transition step, the guards

g of some transition l
g,r
−→ l′ are satisfied by the current clock evaluation ν, that

is, ν |≈ g. Since Ψ is a basis, for all clock evaluations ν̃ ∈ VC with (l, ν̃) ∈ γ(l, b)
it follows by Definition 4.1 that ν≡S ν̃, and therefore by Definition 2.4, ν̃ |≈ g.
Thus, for all clock evaluations ν̃ that satisfy the above conditions, the state
transition l

g,r
−→ l′ is possible. Therefore, for all ν̃ ∈ VC with (l, ν̃) ∈ γ(l, b)

exists ν ′ ∈ VC with (l′, ν ′) ∈ γ(l′, b′) such that (l, ν̃)⇒(l′, ν ′). By Definition 3.3
it follows that (l, b)⇒−(l′, b′).

Second, if (l, ν)⇒(l′, ν ′) holds due to a delay step, then l = l′ and ν ′ |≈ I(l),
for (l, ν ′) ∈ γ(l, b′). Since I(l) ∈ Inv , and Inv is a basis, by Definition 4.1 it
follows that for all clock evaluations ν̃ ∈ VC with (l, ν̃) ∈ γ(l, b), ν≡S ν̃,
and thus by Definition 2.4, ν̃ |≈ I(l). Since (l, ν)⇒(l, ν ′), according to the
restriction of delay steps (Definition 2.7) ν and ν ′ are not in the same region.
Therefore, at location l there exists for all ν̃ ∈ VC with (l, ν̃) ∈ γ(l, b) a delay
step to some ν ′ ∈ VC with (l, ν ′) ∈ γ(l, b′). Again, by Definition 3.3 it follows
that (l, b)⇒−(l′, b′). 2

Corollary 4.4 (Basis Completeness) Let S = 〈L, P,C, T, l0, I〉 be a timed
system, M = 〈L× VC , P,⇒, (l0, ν0)〉 the corresponding transition system, let
Ψ be a basis for S, and let γ(l0, b0) = (l0, ν0). Then for any sentence ϕ ∈ Lµ:

(l0, b0) ∈ [[ϕ]]M
−
Ψ ⇔ (l0, ν0) ∈ [[ϕ]]M ⇔ (l0, b0) ∈ [[ϕ]]M

+

Ψ

14

Möller,Rueß, Sorea

This follows directly from Theorems 3.7 and 4.3.

5 Refinement of the Abstraction

Given a concrete model M of a timed system, with initial state s0, a finite
basis Ψ of abstraction predicates, and a formula ϕ, we present an algorithm
for computing an over-approximation of M that is sufficient to prove or re-
fute the model checking problem M |= ϕ. This over-approximation is based
on a subset of the basis predicates and is computed using stepwise refine-
ment. The abstraction-refinement algorithm is displayed in Figure 4. The
variables Ψnew and Ψact store the currently unused and used abstraction pred-
icates, respectively. Initially Ψact contains a subset Ψ′ of predicates from
the basis, and Ψnew contains the remaining predicates (lines (2) and (3) in

Figure 4). First it is checked if s0 ∈ γ([[ϕ]]M
−
Ψact) by calling a finite-state µ-

calculus model checker. If indeed the under-approximation satisfies ϕ, then,
by Corollary 4.4M also satisfies ϕ and the algorithm returns true (line (5)).

As next, we check if s0 6∈ γ([[ϕ]]M
+

Ψact). If the over-approximation does not
satisfy ϕ, then, also by Corollary 4.4,M does not satisfy ϕ and the algorithm

returns false (line (6)). Otherwise (line (7)), that is, s0 6∈ γ([[ϕ]]M
−
Ψact) and

s0 ∈ γ([[ϕ]]M
+

Ψact), the µ-calculus model checker returns a counterexample in
the form of an abstract path (see [12]) q0⇒

+q1⇒
+ · · ·⇒+qn, where q0 is the

initial state of M+
ψ . If for the abstract path, there exists a corresponding

path in the concrete transition system, then we get a counterexample for the
concrete model checking problem (lines (8)-(10)). In this case the algorithm
returns false. This check requires an off-the-shelf satisfiability-checker for the
boolean combination of linear arithmetic constraints such as ICS [9]. In case
the abstract counterexample is spurious, there exists a smallest index k and
a concrete path y0⇒· · ·⇒yk, where y0 is the initial location of M, and for
all i ∈ {0, · · · , k}, yi ∈ γ(qi), such that there is no (concrete) transition from
yk to yk+1, where yk+1 ∈ γ(qk+1) (lines (11)-(14)). We choose a minimal set
of new abstraction predicates from Ψnew such that the transition from qk to
qk+1 is eliminated (lines (15)-(18)). This new set of abstraction predicates is
selected in such a way that the formula

∃ y1, y2 ∈ S
C . y1 ∈ γ(qk) ∧ y2 ∈ γ(qk+1) ∧ y1;y2

holds. Notice that the concretization function γ actually depends on the
current set Ψact of abstraction predicates.

Theorem 5.1 (Termination, Soundness, and Completeness) Let M
be a transition system with a corresponding finite basis Ψ, and ϕ a sentence
in Lµ. Then the algorithm in Figure 4 always terminates. Moreover, if it
terminates with true, then M |= ϕ, and if the result is false, then M 6|= ϕ.

Proof. Follows directly from the finiteness of the basis and Theorems 4.3
and 3.7. 2

15

Möller,Rueß, Sorea

Algorithm: abstract and refine

input: M, initial state s0, ϕ, basis Ψ

output: answer to model checking query M
?

|= ϕ

choose Ψ′ = {ψ1, . . . , ψi} from Ψ;(1)

Ψnew := Ψ \Ψ′;(2)

Ψact := Ψ′;(3)

loop(4)

if s0 ∈ γ([[ϕ]]
M−

Ψact) then return true(5)

else if s0 6∈ γ([[ϕ]]
M+

Ψact) then return false(6)

else let (q0⇒
+q1 · · ·⇒

+qn) be a counterexample in M+
Ψact

(7)

if there exists a path τ = (y0⇒y1 · · ·⇒yn)(8)

such that y0 = s0 and yi ∈ γ(qi) for all 0 ≤ i ≤ n(9)

then return false(10)

else let k such that ∃ a path τ = (y0⇒y1 · · ·⇒yk)(11)

where y0 = s0 and(12)

yi ∈ γ(qi) for all 0 ≤ i ≤ k and(13)

∀ yk+1 ∈ γ(qk+1). yk;yk+1;(14)

choose minimal Ψ′ = {ψ1, . . . , ψi} from Ψnew such that(15)

∀ y1 ∈ γ(qk), y2 ∈ γ(qk+1). y1;y2;(16)

Ψact := Ψact ∪ {Ψ
′};(17)

Ψnew := Ψnew \Ψ
′(18)

endif(19)

endif(20)

endloop(21)

Fig. 4. Iterative Abstraction-Refinement Algorithm.

Example 5.2 Consider again the timed system from Figure 1, and the for-
mula ϕ := ¬∃ (tt U at l2) which describes the property that location l2 is
never reached. A given basis for this system is Ψ:={x = 0, y = 0, x ≤ 1, x ≥
1, y ≤ 1, y ≥ 1, x > y, x < y}. The transition system of the initial over-
approximation with the single abstraction predicate ψ0 ≡ x = 0 is shown in
Figure 5.

Model checking the formula ϕ on the transition system M−
{x=0} returns

false, since s0 = (l0, x = y = 0) 6∈ γ([[ϕ]]M
−
{x=0}). The algorithm returns

the counterexample (l0, ψ0)⇒
+(l1, ψ0)⇒

+(l1,¬ψ0)⇒
+(l2,¬ψ0), which is em-

phasized in Figure 5 using lines in bold face. The concretizations of the states
on this abstract path are as follows. To simplify the notation we denote
sets of configurations such as {(l, ν) | l = l1 ∧ ν(x) = 0 ∧ ν(y) ≥ 0} by
(l1, x = 0 ∧ y ≥ 0).

16

Möller,Rueß, Sorea

l0, ψ0

l0,¬ψ0

l1, ψ0

l1,¬ψ0

l2, ψ0

l2,¬ψ0

Fig. 5. Over-approximation of the timed system from Figure 1 with ψ0 ≡ x = 0.

γ(q0)= γ(l0, ψ0) = (l0, x = 0 ∧ y ≥ 0)

γ(q1)= γ(l1, ψ0) = (l1, x = 0 ∧ y ≥ 0)

γ(q2)= γ(l1,¬ψ0) = (l1, x > 0 ∧ y ≥ 0)

γ(q3)= γ(l2,¬ψ0) = (l2, x > 0 ∧ y ≥ 0)

Now we have to check if there is a corresponding counterexample on the con-
crete transition system, that is, if there exists a path y0⇒y1⇒y2⇒y3, where
y0, y1, y2, y3 ∈ SC , such that y0 ∈ γ(q0), y1 ∈ γ(q1), y2 ∈ γ(q2), y3 ∈ γ(q3),
and y0 = s0. This is the case if the formula

F1 :=∃ y0, y1, y2, y3 ∈ S
C . y0 ∈ γ(q0) ∧ y1 ∈ γ(q1) ∧ y2 ∈ γ(q2) ∧

y3 ∈ γ(q3) ∧ y0⇒y1 ∧ y1⇒y2 ∧ y2⇒y3 ∧ y0 = s0

is valid. In our example F1 is unsatisfiable, since on the concrete transition
system there is no transition between y2 and y3, as it is illustrated by the path

(l0, x = y = 0)
︸ ︷︷ ︸

3y0

⇒ (l1, x = 0∧ 0 ≤ y ≤ 1)
︸ ︷︷ ︸

3y1

⇒ (l1, x > 0∧x ≤ y)
︸ ︷︷ ︸

3y2

Thus, k = 2 in our algorithm, and we choose a new set of abstraction
predicates such that there exist concrete configurations y1, y2 ∈ SC with
y1 ∈ γ(q2) and y2 ∈ γ(q3) such that there is no transition from y1 to y2.
For example, by choosing the new abstraction predicate ψ1 ≡ x > y the for-
mula ∃ y1, y2 ∈ SC . y1 ∈ γ(q2) ∧ y2 ∈ γ(q3) ∧ y1;y2 can be shown to hold
using a verification procedure for this decidable fragment of arithmetic. Fig-
ure 6 shows the reachable fragment of the resulting approximation ofM with
Ψ = {ψ0, ψ1}. Model checking the formula ϕ = ¬∃ (tt U at l2) on M−

{ψ0,ψ1}

succeeds, since s0 = (l0, ψ0 ∧ ¬ψ1) ∈ γ([[ϕ]]
M−
{ψ0,ψ1}).

6 Conclusion

We have developed a verification algorithm for timed automata based on pred-
icate abstraction, untimed model checking, and decision procedures for the
Boolean combination of linear arithmetic constraints. The main advantage of
this approach is that finite time-abstractions are computed lazily. This results
in substantial savings in computation whenever coarse abstractions are suffi-
cient to prove the property at hand. Initial investigations are encouraging in

17

Möller,Rueß, Sorea

l0, ψ0 ∧¬ψ1

l0,¬ψ0 ∧ψ1

l1, ψ0 ∧¬ψ1

l1,¬ψ0 ∧¬ψ1

Fig. 6. Over-/Under-approximation (reachable part) of the timed system from Fig-
ure 1 with Ψ = {x = 0, x > y}.

that standard benchmark examples for timed systems such as the train-gate
controller and a version of the Fischer mutual exclusion protocol can generally
be proved using only a few abstraction predicates. However, more experimen-
tation is needed to corroborate the thesis that many real-life timed systems
can already be verified with rather coarse-grain abstractions.

The algorithm as described in this paper is restricted to deal with real-
time systems with finite control only. The predicate abstraction of timed
systems, however, can readily be extended to also apply to richer models
such as parameterized timed automata and even to timed automata with
other infinite data types such as counters or stacks. The price to pay, of
course, is that such extensions are necessarily incomplete. In future work
we would also like to address time-abstracting formulas with arithmetic and
other constraints instead of only supporting propositional variables. In this
way we could express and verify further interesting properties such a bounded
response.

Acknowledgement

We would like to thank H. Saidi, N. Shankar, and T. Uribe for their valuable
comments on this paper.

References

[1] Alur, R., C. Courcoubetis and D. Dill, Model-checking for real-time systems,
5th Symp. on Logic in Computer Science (LICS 90) (1990), pp. 414–425.

[2] Alur, R. and D. L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (1994), pp. 183–235.

[3] Bensalem, S., Y. Lakhnech and S. Owre, Computing abstractions of infinite
state systems compositionally and automatically, Lecture Notes in Computer
Science 1427 (1998), pp. 319–331.

[4] Clarke, E., O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-
guided abstraction refinement, Lecture Notes in Computer Science 1855 (2000),
pp. 154–169.

18

Möller,Rueß, Sorea

[5] Cousot, P. and R. Cousot, Abstract intrepretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints, in:
Conference Record of the 4th ACM Symposium on Principles of Programming
Languages, Los Angeles, CA, 1977, pp. 238–252.

[6] Dams, D. R., “Abstract Interpretation and Partition Refinement for Model
Checking,” Ph.D. thesis, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands (1996).

[7] Das, S. and D. L. Dill, Successive approximation of abstract transition relations,
in: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science (LICS-01) (2001), pp. 51–60.

[8] Dill, D. and H. Wong-Toi, Verification of real-time systems by successive over
and under approximation, Lecture Notes in Computer Science 939 (1995),
pp. 409–422.

[9] Filliâtre, J.-C., S. Owre, H. Rueß and N. Shankar, ICS: Integrated Canonization
and Solving, in: G. Berry, H. Comon and A. Finkel, editors, Proceedings of
CAV’2001, Lecture Notes in Computer Science 2102 (2001), pp. 246–249.

[10] Graf, S. and H. Säıdi, Construction of abstract state graphs with PVS, Lecture
Notes in Computer Science 1254 (1997), pp. 72–83.

[11] Henzinger, T. A., X. Nicollin, J. Sifakis and S. Yovine, Symbolic model checking
for real-time systems, Information and Computation 111 (1994), pp. 193–244.

[12] Kick, A., “Generation of counterexamples and witnesses for the Mu-calculus,”
Ph.D. thesis, University of Karlsruhe, Germany (1996).

[13] Kozen, D., Results on the propositional µ-calculus, Theoretical Computer
Science 27 (1983), pp. 333–354.

[14] Lachnech, Y., S. Bensalem, S. Berezin and S. Owre, Incremental verification by
abstraction, Lecture Notes in Computer Science 2031 (2001), pp. 98–112.

[15] Möller, M. O., H. Rueß and M. Sorea, Predicate abstraction for dense real-
time systems, Technical Report BRICS-RS-01-44, Department of Computer
Science, University of Aarhus, Denmark (2001), Available online at
http://www.brics.dk/RS/01/44/.

[16] Namjoshi, K. and R. Kurshan, Syntactic program transformations for automatic
abstraction, Lecture Notes in Computer Science 1855 (2000), pp. 435–449.

[17] Säıdi, H. and N. Shankar, Abstract and model check while you prove, Lecture
Notes in Computer Science 1633 (1999), pp. 443–454.

[18] Tripakis, S. and S. Yovine, Analysis of timed systems using time-abstracting
bisimulations, Formal Methods in System Design 18 (2001), pp. 25–68.

[19] Uribe, T. E., “Abstraction-based Deductive-Algorithmic Verification of
Reactive Systems,” Ph.D. thesis, Computer Science Department, Stanford
University (1998), technical report STAN-CS-TR-99-1618.

19

Möller,Rueß, Sorea

[20] Yovine, S., Model-checking timed automata, in: G. Rozenberg and
F. Vaandrager, editors, Embedded Systems, number 1494 in Lecture Notes in
Computer Science, 1998, pp. 114–152.

20

	Introduction
	Timed Systems
	Definition of Next-Free -Calculus

	Predicate Abstraction of Timed Systems
	Basis
	Refinement of the Abstraction
	Conclusion
	Acknowledgement
	References

