
The Concurrency Workbench:

making CCS run

Featuring: ª CWB Edinburgh Version 7.1

ª Emacs &

ª daVinci 2.1

1. A word about tools

2. Calculus of Communicating Systems (CCS)

3. The modal µ-Calculus

4. Case study: Fairness is a problem

5. Theory for Practice?

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 1

A Short Timeline

’86 conceived from theoretical, educational and practical concerns

used both in teaching and industry

treatment for CCS, TCCS and SCCS

’94 ≈ 20,000 lines of SML code, ≈ 90 commands

(this is when a systems- and software engineer was hired)

today Version 7.1 available for Solaris and Linux

about 800 KB SML source code

interface: Emacs & daVinci

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 2

Structure of the CWB

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 3

What can we do with the CWB?

• define agents

• simulate agents

• check equalities

• check properties from the modal µ-calculus

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 4

CCS in the Concurrency Workbench

AGENT A 0 deadlock (nil)

a.A action prefix

tau.A silent prefix

A + A (weak) choice

A | A parallel composition

A \ S restriction: actions in S synchronized

(A) you can use brackets almost as you’d expect

SET S {a,b,c,...} a collection of actions

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 5

Making Coffee

4 5

2

1

tea coffee

τ

D

A

τ

tea coffee

τ

B

E

C

not bisimilar

not weakly bisimilar

 cannot match A

τ→ B

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 6

Drinking Coffee

Add a consumer:

T

coffee tea

4 5

2

1

tea coffee

τ

||

T

coffee tea︸ ︷︷ ︸
P

D

A

τ

tea coffee

τ

B

E

C ||

T

coffee tea︸ ︷︷ ︸
Q

Now P and Q are even strongly bisimilar

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 7

Drinking Coffee

Add a consumer:

T

coffee tea

(
4 5

2

1

tea coffee

τ

||

T

coffee tea

)
\ D

︸ ︷︷ ︸
P

(
D

A

τ

tea coffee

τ

B

E

C ||

T

coffee tea

)
\ D

︸ ︷︷ ︸
Q

Now P and Q are even strongly bisimilar if we require them
to synchronize on their actions:

D := {tea, coffee}

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 8

Reminder: Levels of Equivalence

∼ strongeq congruence : P ∼ Q > P + R ∼ Q + R

P || R ∼ Q || R

≈ eq process congruence : P ≈ Q > α.P + R ≈ α.Q + R

P || R ≈ Q || R

mayeq trace equivalence P can produce trace α ⇔
Q can produce trace α

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 9

Additional (weak) Equalities

2

a

τ
a

1

a

3

2

a

τ

1

3

1

4

3

2

3

5

4

a

b τ

c

2

3

8

5

7

4

aa

b τ

c

c

11

a ≈ τ.a ≈ a + τ.a a.(b + τ.c) ≈ a.(b + τ.c) + a.c

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 10

Temporal Logics

- calculusµ

ATL*

CTL*

ATL

CTL

HM

LTLpath logic

interaction with environment

safety properties

lifeness properties

bisimulation

} general ’E’ and ’A’ formulas

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 11

µ Calculus Syntax in CWB

PROP P T true

F false

˜P negation

P & P conjunction

P | P disjunction

P => P implication

[a,...]P strong necessity

[-a,...]P strong complement necessity

[[a,...]]P weak necessity

〈a,...〉P strong possibility

〈〈a,..〉〉 weak possibility

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 12

Special non-labels

tau: unobservable action

• tau.a.0 |= <tau><a>T

• tau.a.0 6|= <a>T

• tau.tau.a.0 6|= <tau><a>T

• tau.a.0 |= <<tau>><a>T

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 13

Special non-labels

tau: unobservable action

• tau.a.0 |= <tau><a>T

• tau.a.0 6|= <a>T

• tau.tau.a.0 6|= <tau><a>T

• tau.a.0 |= <<tau>><a>T not allowed

eps: empty observation

• tau.a.0 |= <<eps>><a>T

• a.0 |= <<eps>><a>T

• a.b.0 |= <-eps>T

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 14

Fixpoint Operators

min(X.P) least fixpoint temporal formula

max(X.P) greatest fixpoint temporal formula

max(Z.ϕ & [-]Z) AG ϕ Invariant

max(Z.[a]F & [-]Z) AG [a]F Safety: Never a

min(Z.<a>T | <->Z) EF <a>T Eventually a

min(Z.[-a]F | (<->T &[-]Z)) AF (<a>T&[-a]F) Inevitably a

min(Z.Q | (P & <->T & [-]Z)) P Until Q strong until

max(Z.Q | (P & [-]Z)) P Wuntil Q weak until

max(Z.[a]min(Y.<->T & [-b]Y)&[-]Z AG(a => AFT) Response

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 15

What we have not:

• a notion of states or local propositions

• a global store

• an easy way to check, that a µ-formula and intuition coincide

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 16

Common Pitfalls

tau and eps

true: <<eps>> ≡ <<-S>> ≡ <tau>∗

false: <<-eps>> ≡ <<S>>

e.g. tau.a.0 |= <<-eps>><a>T but tau.a.0 6|= <<S>><a>T

Modalities in fixed points

max(Z.ϕ & [-]Z) : ϕ allways

max(Z.ϕ & [S]Z) : ϕ in all paths excluding tau

S: set of all observable actions

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 17

Living without Propositional Formulas

A p holds

a b
; A

a b

p Problems:

• deadlock properties not preserved

• AF properties fail now

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 18

Living without Propositional Formulas

A p holds

a b
; A

a b

p Problems:

• deadlock properties not preserved

• AF properties fail now

;
former
self
loops

A

a b

p

A′

Problems:

• p must be unsynchronized

• we destroy one-step properties

• a, b do not stay enabled

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 19

Living without Propositional Formulas (2)

A p holds

a b
; A

a b

p Problems:

• introduces deadlocks

• AF properties fail now

Thus: We can augment our model, to make states observable...

but we have to be careful not modify the behaviour!

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 20

Living without Memory

CWB does not allow a store as part of a systems state.
> We have to model it explicitly

Variable M of type int[0..2]

’setM_0

’setM_0

’setM_2’setM_1 readM_2

M_2

’setM_2

’setM_2 ’setM_1readM_1

M_1

’setM_1

’setM_0readM_0

M_0

Problems:

• Sequential
Queries

• Tedious

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 21

Weak Fairness

beep

beep.Loop

ba

Loop
Want: exclude all runs Σ∗aω

1. Attempt: Always, b will eventually be taken

νX.µY.(〈-〉T ∧ [−b]Y) ∧ [−]X

2. Attempt: If a is taken ∞ often, then so is b

µX.νY.(〈a〉T ∨X) ∧ [−b]Y

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 22

Weak Fairness

beep

beep.Loop

ba

Loop
Want: exclude all runs Σ∗aω

1. Attempt: Always, b will eventually be taken

νX.µY.(〈-〉T ∧ [−b]Y) ∧ [−]XνX.µY.(〈-〉T ∧ [−b]Y) ∧ [−]X

2. Attempt: If a is taken ∞ often, then so is b

µX.νY.(〈a〉T ∨X) ∧ [−b]YµX.νY.(〈a〉T ∨X) ∧ [−b]Y

Problem: We can express fairness,

but not add it as an Assumption

‘inevitably, it will beep’ is equivalent to false.
AND: our formulas are equivalent to false.

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 23

Dekker’s Mutex Algorithm

**** Agent 1 ****

while true

b1 := true

while b2 do

if k = 2 then

b1 := false

while k = 2 skip;

b1 := true

<enter critical region>

<exit critical region>

k := 2

b1 := false

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 24

Dekker’s Mutex Algorithm

**** Agent 1 ****

while true

b1 := true

while b2 do

if k = 2 then

b1 := false

while k = 2 skip;

b1 := true

<enter critical region>

<exit critical region>

k := 2

b1 := false

critical

Want to prove:
Freedom from individual starvation

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 25

Problem: Read Loops

critical

READ
LOOP

(Unfair) loops are possible.
> Freedom from individual starva-
tion requires a fairness assumption

critical

c
a

b

In order to incorporate a fairness as-
sumption, we introduce additional
observable actions a,b,c.

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 26

A Detour to (Starvation) Freedom

1. The system is deadlock-free:

System |= νZ.<->T ∧ [-]Z

2. It is impossible to reach fair loops:

∀actions x : System 6|= µZ.(νX.[[-x]]F ∧ [[x]]X) ∨ <->Z

3. If actions x, y happen ∞ often, then c happens ∞ often :

System |= νZ.µX.([x](νY.([y](νW.(X∧[-c]W)))∧[-c]Y)∧[-]Z)

strong fairness
1,2; at least two actions are observed ∞ often
3; freedom of individual starvation

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 27

Is the CWB a Tool for Industry?

Motivations for using the CWB

• curiosity (see CCS ’work’)

• verification (prove properties about your model)

• the attractive expressiveness of µ-calculus formulas

• experiments with own – process algebras

– logics

– modelchecking algorithms

Limitations

• SML implementation rather consumptive (time/memory)

• graphical viewer does not scale well

; can be overcome... by investment of sufficient manpower

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 28

Why is it not used every day?

? interface is a command-line

? the agent model is unfamiliar to engineers

? logic is too difficult to understand

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 29

How do Industrial Tools Look Like?

Industrial tools

• do things that are conceptually simple

• do things that are... but large and complex

• are (relatively) easy to understand and to operate

• have to be capable of dealing with large instances

... and they have nice user interfaces(!)

! methods that are difficult to learn

$ technologies that require experts

6Z hands off: non-proven technologies

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 30

Tools in Practice

− calculusµ

ATL*

CTL*

ATL

CTL

HM

LTLSPIN

Mocha

reachability (e.g visualState)

SMV

CWB[−NC], Theorem provers

} no specialized tools
Waterline

Incomplete Methods: Simulation, (automated) Testing

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 31

Invitation: Dig Deeper

The user manual The Edingburgh Concurrency Workbench (Version 7.1)

Colin Stirling’s Article Bisimulation, Model Checking and other Games

The tool page of Kim’s course http://www.brics.dk/~omoeller/v01/

Find these slides at
http://www.brics.dk/~omoeller/v01/cwb.pdf

Talk at Cambridge - 9 February 2001 M. Oliver Möller: The Concurrency Workbench 32

file:///users/btools/CWB-7.1/doc/manual.ps
http://www.dcs.ed.ac.uk/home/cps/mathfit.ps
http://www.brics.dk/~omoeller/v01/
http://www.brics.dk/~omoeller/v01/
http://www.brics.dk/~omoeller/v01/cwb.pdf
http://www.brics.dk/~omoeller/v01/cwb.pdf

	Test Title
	A Short Timeline
	Structure of the CWB
	What can we do with the CWB?
	CCS in the Concurrency Workbench
	Making Coffee
	Drinking Coffee
	Reminder: Levels of Equivalence
	Additional (weak) Equalities
	Temporal Logics
	 Calculus Syntax in CWB
	Special non-labels
	Fixpoint Operators
	What we have not:
	Common Pitfalls
	Living without Propositional Formulas
	Living without Propositional Formulas (2)
	Living without Memory
	Weak Fairness
	Dekker's Mutex Algorithm
	Problem: Read Loops
	A Detour to (Starvation) Freedom
	Is the CWB a Tool for Industry?
	Why is it not used every day?
	How do Industrial Tools Look Like?
	Tools in Practice
	Invitation: Dig Deeper

